Схемы ум вч для измерительных мостов. Прибор для настройки kb антенн. Настройка, балансировка и калибровка

Шумовой мост используется для измерения и тестирования параметров антенн, линий связи, определения характеристик резонансных цепей и электрической длины фидера. Шумовой мост, как следует из его названия, является устройством мостового типа. Источник шума генерирует шум в диапазоне от 1 до 30 МГц. С применением высокочастотных элементов этот диапазон расширяется, и при необходимости можно настраивать антенны диапазона 145 МГц.

Шумовой мост работает совместно с радиоприемником, который используется для детектирования сигнала. Подойдет также любой трансивер.

Принципиальная схема прибора приведена выше. Источником шума является стабилитрон VD2. Здесь следует отметить, что некоторые экземпляры стабилитронов недостаточно «шумят», и следует выбрать наиболее подходящий. Генерируемый стабилитроном шумовой сигнал усиливается широкополосным усилителем на транзисторах VT2, VT3. Число усилительных каскадов может быть уменьшено, если используемый приемник имеет достаточную чувствительность. Далее сигнал подается на трансформатор Т1. Он намотан на тороидальном ферритовом кольце 600 НН диаметром 16…20 мм одновременно тремя скрученными проводами ПЭЛШО диаметром 0,3…0,5 мм с намотанными 6 витками.

Регулируемое плечо моста составляют переменные резистор R14 и конденсатор С12. Измеряемое плечо - конденсаторы С10, С11 и подключаемая антенна с неизвестным импедансом. В измерительную диагональ подключается приемник в качестве индикатора. Когда мост разбалансирован, в приемнике слышен мощный равномерный шум. По мере настройки моста шум становится все тише и тише. «Мертвая тишина» свидетельствует о точной балансировке.

Следует отметить, что измерение происходит на частоте настройки приемника.

Размещение деталей:


Прибор конструктивно выполнен в корпусе размером 110x100x35 мм. На передней панели располагаются переменные резисторы R2 и R14, переменные конденсаторы С11 и С12 и выключатель напряжения питания.
Сбоку размещены разъемы для подключения радиоприемника и антенны. Питание прибора осуществляется от внутренней батареи или аккумулятора. Ток потребления - не более 40 мА.

Переменные резистор R14 и конденсатор С12 необходимо снабдить шкалами.

Настройка, балансировка и калибровка

Подключаем радиоприемник с отключенной системой АРУ к соответствующему разъему. Конденсатор С12 устанавливаем в среднее положение. Вращая резистор R2, следует убедиться, что генерируемый шум присутствует на входе приемника на всех диапазонах. К разъему «Антенна» подключаем безындукционные резисторы типа МЛТ или ОМЛТ, предварительно измерив их номиналы цифровым авометром. При подключении сопротивлений добиваемся вращением R14 резкого уменьшения уровня шума в приемнике.

Подбором конденсатора С12 минимизируем уровень шума и делаем отметки на шкале R14 в соответствии с подключенным образцовым резистором. Таким образом производим калибровку прибора вплоть до отметки 330 Ом.

Калибровка шкалы С12 несколько сложнее. Для этого поочередно подключаем к разъему «Антенна» параллельно соединенные резистор 100 Ом и емкость (индуктивность) величиной 20.. 70 пФ (0,2…1,2 мкГн). Добиваемся баланса моста установкой R14 на отметке 100 Ом шкалы и минимизацией уровня шума вращением С12 в обе стороны от положения «0». При наличии RC-цепочки ставим знак «-» на шкале, а при наличии RL-цепочки - знак «+». Вместо индуктивности можно присоединить конденсатор 100 .7000 пф, но последовательно с резистором 100 Ом.

Измерение импеданса антенны

R14 устанавливаем в положение, соответствующие импедансу кабеля - это для большинства случаев 50 или 75 Ом. Конденсатор С12 устанавливаем в среднее положение. Приемник настраиваем на ожидаемую резонансную частоту антенны. Включаем мост, выставляем некоторый уровень шумового сигнала. С помощью R14 настраиваемся на минимальный уровень шума, и с помощью С12 дополнительно понижаем шум. Эти операции проводим несколько раз, так как регуляторы влияют друг на друга. Настроенная в резонанс антенна должна иметь нулевое реактивное сопротивление, а активное сопротивление должно соответствовать волновому сопротивлению применяемого кабеля. В реальных антеннах сопротивления, как активное, так и реактивное, могут существенно отличаться от расчетных.

Определение резонансной частоты

Приемник настраивается на ожидаемую резонансную частоту. Переменный резистор R14 устанавливается на сопротивление 75 или 50 Ом.
Конденсатор С12 устанавливается в нулевое положение, а контрольный приемник перестраивается по частоте до получения минимального шумового сигнала.

Шумовой мост, как следует из его названия, является устройством мостового типа. Источник шума генерирует шум в диапазоне от 1 до 30 МГц. С применением высокочастотных элементов этот диапазон расширяется, и при необходимости можно настраивать антенны диапазона 145 МГц. Шумовой мост работает совместно с радиоприемником, который используется для детектирования сигнала. Подойдет также любой трансивер.

Принципиальная схема прибора приведена на рис.1. Источником шума является стабилитрон VD2. Здесь следует отметить, что некоторые экземпляры стабилитронов недостаточно "шумят", и следует выбрать наиболее подходящий. Генерируемый стабилитроном шумовой сигнал усиливается широкополосным усилителем на транзисторах VT2, VT3.


Число усилительных каскадов может быть уменьшено, если используемый приемник имеет достаточную чувствительность. Далее сигнал подается на трансформатор Т1. Он намотан на тороидальном ферритовом кольце 600 НН диаметром 16...20 мм одновременно тремя скрученными проводами ПЭЛШО диаметром 0,3...0,5 мм; число витков -6.

Регулируемое плечо моста составляют переменные резистор R14 и конденсатор С12. Измеряемое плечо - конденсаторы С10, СИ и подключаемая антенна с неизвестным импедансом. В измерительную диагональ подключается приемник в качестве индикатора. Когда мост разбалансирован, в приемнике слышен мощный равномерный шум. По мере настройки моста шум становится все тише и тише. "Мертвая тишина" свидетельствует о точной балансировке. Следует отметить, что измерение происходит на частоте настройки приемника. Печатная плата и размещение деталей на ней приведены на рис.2.

Прибор конструктивно выполнен в корпусе размером 110х100х35 мм. На передней панели располагаются переменные резисторы R2 и R14, переменные конденсаторы С11 и С12 и выключатель напряжения питания. Сбоку - разъемы для подключения радиоприемника и антенны. Питание прибора осуществляется от внутренней батареи типа"Крона"или аккумулятора. Ток потребления - не более 40 мА.
Переменные резистор R14 и конденсатор С12 необходимо снабдить шкалами.

Настройка, балансировка и калибровка

Подключаем радиоприемник с отключенной системой АРУ к соответствующему разъему. Конденсатор С12 устанавливаем в среднее положение. Вращая резистор R2, следует убедиться, что генерируемый шум присутствует на входе приемника на всех диапазонах. К разъему "Антенна" подключаем безындукционные резисторы типа МЛТ или ОМЛТ, предварительно измерив их номиналы цифровым авометром. При подключении сопротивлений добиваемся вращением R14 резкого уменьшения уровня шума в приемнике.

Подбором конденсатора С12 минимизируем уровень шума и делаем отметки на шкале R14 в соответствии с подключенным образцовым резистором. Таким образом производим калибровку прибора вплоть до отметки 330 Ом.

Калибровка шкалы С12 несколько сложнее. Для этого поочередно подключаем к разъему "Антенна" параллельно соединенные резистор 100 Ом и емкость (индуктивность) величиной 20...70 пф (0,2...1,2 мкГн). Добиваемся баланса моста установкой R14 на отметке 100 Ом шкалы и минимизацией уровня шума вращением С 12 в обе стороны от положения "О". При наличии RC-цепочки ставим знак"-" на шкале, а при наличии RL-цепочки - знак "+". Вместо индуктивности можно присоединить конденсатор 100...7000 пф, но последовательно с резистором 100 Ом.

Измерение импеданса антенны

R14 устанавливаем в положение, соответствующие импедансу кабеля - это для большинства случаев 50 или 75 Ом. Конденсатор С12 устанавливаем в среднее положение. Приемник настраиваем на ожидаемую резонансную частоту антенны. Включаем мост, выставляем некоторый уровень шумового сигнала. С помощью R14 настраиваемся на минимальный уровень шума, и с помощью С12 дополнительно понижаем шум. Эти операции проводим несколько раз, так как регуляторы влияют друг на друга. Настроенная в резонанс антенна должна иметь нулевое реактивное сопротивление, а активное сопротивление должно соответствовать волновому сопротивлению применяемого кабеля. В реальных антеннах сопротивления, как активное, так и реактивное, могут существенно отличаться от расчетных.

Определение резонансной частоты

Приемник настраивается на ожидаемую резонансную частоту. Переменный резистор R14 устанавливается на сопротивление 75 или 50 Ом.

Конденсатор С12 устанавливается в нулевое положение, а контрольный приемник перестраивается по частоте до получения минимального шумового сигнала.

На рис.1 приведена схема ВЧ-моста, разработанная на основе конструкции UA9AA .


Рис.1

Как правило, навесной монтаж, применяемый при изготовлении моста, ограничивает диапазон рабочих частот подобных устройств значениями 140...150 МГц. Чтобы обеспечить работу в диапазоне 430 МГц, прибор целесообразно изготовить на двустороннем фольгированном текстолите. Один из удачных вариантов монтажа показан на рис.2 и 3.


Рис.2

На верхней стороне платы (рис.2) расположены два безындукционных резистора R1, R2 с компенсационными конденсаторами С4, С5. На нижней стороне (рис.3) размещаются остальные детали моста. Монтаж выполнен на "пятачках".


Рис.3

Расстояния между "пятачками" определяются размерами используемых деталей. Кружки, обозначенные на рисунках штриховыми линиями, соединены между собой через отверстия в плате.

При изготовлении моста особое внимание следует уделить качеству используемых деталей. Конденсаторы С1, С2 - керамические, безвыводные, типа К10-42, К10-52 или аналогичные. Опорный конденсатор С3 - КДО-2. Подстроечные конденсаторы С4, С5-типа КТ4-21, КТ4-25; остальные конденсаторы - КМ, КЦ. Резисторы R1, R2 должны быть типа МОН, С2-10, С2-33 мощностью 0,5 Вт и иметь одинаковое сопротивление в пределах 20...150 Ом. Если используются резисторы типа МОН, то выводы у них откусываются до основания, которое зачищается и залуживается, а затем припаивается к нужному "пятачку". Резистор R3 - типа СП4-1, СП2-36, безындукционный, с графитовой дорожкой. Этот резистор крепится на боковой стенке из фольгированного текстолита, однако фольга в месте его крепления удаляется. Корпус резистора не соединяется с общим проводом, иначе мост не удастся сбалансировать. Ручка, укрепляемая на оси резистора, должна быть изготовлена из изоляционного материала. Кроме резистора R3, на боковых стенках крепятся разъемы СР-50. Места соединения (стыки) между боковыми стенками и основной платой тщательно пропаиваются.

Мощность сигнала от генератора должна быть около 1 Вт. В качестве генератора могут использоваться, например, IC-706MK2G, варакторный утроитель и т.д.

При проверке балансировки ВЧ-моста в диапазонах VHF и UHF используются только безындукционные резисторы. Точной настройке компенсационных конденсаторов (при одном и том же сопротивлении нагрузки) соответствует неизменный баланс на нескольких диапазонах (например, 7...430 МГц). Если не удастся подобрать достаточное количество безындукционных резисторов для градуировки моста, промежуточные значения шкалы прибора можно отградуировать на НЧ-диапазонах, используя распространенные резисторы, например, типа МЛТ или МТ.

Для измерения реактивности нагрузки потребуется заменить конденсатор С5 переменным (с воздушным диэлектриком и максимальной емкостью около 20 пФ), однако верхний частотный предел измерений ограничен диапазоном 144 МГц, т.к. не удается полностью компенсировать емкость монтажа.

Если в приборе использовать дроссели индуктивностью 200 мкГн, частотный диапазон моста составит 0,1...200 МГц.

Предлагаемая конструкция имеет очень хорошую повторяемость, в отличие от устройств, выполненных с применением навесного монтажа.

Литература

  1. Ю.Селевко (UA9AA). Прибор для настройки антенн. Радиолюбитель, 1991, N5, С.32...34.

Измерительный мост высокой частоты представляет собой обычный мост Уитстона и может использоваться для определения степени согласованности антенны с линией передачи. Эта схема известна под многими названиями (например, «антенноскоп» и т. д.), но в основе ее всегда лежит принципиальная схема, изображенная на рис. 14-15.

По мостовой схеме протекают токи высокой частоты, поэтому все резисторы, используемые в ней, должны представлять чисто активные сопротивления для частоты возбуждения. Резисторы R 1 и R 2 подбираются в точности равными друг другу (с точностью 1% или даже больше), а само сопротивление не имеет особого значения. При сделанных допущениях измерительный мост находится в равновесии (нулевое показание измерительного прибора) при следующих соотношениях между резисторами: R 1 = R 2 ; R 1: R 2 =1:1; R 3 = = R 4 ; R 3: R 4 = 1: 1.

Если вместо резистора R 4 включить испытываемый образец, сопротивление которого требуется определить, а в качестве R 3 использовать отградуированное переменное сопротивление, то нулевое показание измерителя разбаланса моста будет достигнуто при значении переменного сопротивления, равном активному сопротивлению испытываемого образца. Таким образом можно непосредственно измерить сопротивление излучения или входное сопротивление антенны. При этом следует помнить, что входное сопротивление антенны чисто активно только в случае, когда антенна настроена, поэтому частота измерений всегда должна соответствовать резонансной частоте антенны. Кроме того, мостовая схема может использоваться для измерения волнового сопротивления линий передачи и их коэффициентов укорочения.

На рис. 14-16 показана схема высокочастотного измерительного моста, предназначенного для антенных измерений, предложенная американским радиолюбителем W 2AEF (так называемый «антенноскоп»).

Резисторы R 1 и R 2 обычно выбираются равными 150-250 ом ,и абсолютная их величина не играет особой роли, важно только, чтобы сопротивление резисторов R 1 и R 2 , а также емкости конденсаторов С 1 и С 2 были равны друг другу. В качестве переменного сопротивления следует использовать только безындуктивные объемные переменные резисторы и нив коем случае не проволочные потенциометры. Переменное сопротивление обычно 500 ом , а если измерительный мост используется для измерений только на линиях передачи, изготовленных из коаксиальных кабелей, то 100 ом , что позволяет более точно производить измерения. Переменное сопротивление градуируется, и при балансе моста оно должно быть равным с сопротивлением испытываемого образца (антенны, линии передачи). Дополнительное сопротивление R Ш зависит от внутреннего сопротивления измерительного прибора и требуемой чувствительности измерительной схемы. В качестве измерительного прибора можно использовать магнитоэлектрические миллиамперметры со шкалой 0,2; 0,1 или 0,05 ма . Дополнительное сопротивление следует выбирать по возможности высокоомным, так чтобы подключение измерительного прибора не вызывало значительного разбаланса моста. В качестве выпрямляющего элемента может использоваться любой германиевый диод.

Проводники мостовой схемы должны быть как можно короче для уменьшения их собственной индуктивности и емкости; при конструировании прибора следует соблюдать симметрию в расположении его деталей. Прибор заключается в кожух, разделенный на три отдельных отсека, в которых, как показано на рис. 14-16, помещаются отдельные элементы схемы прибора. Одна из точек моста заземляется, и, следовательно, мост несимметричен относительно земли. Поэтому мост наиболее подходит для измерения на несимметричных (коаксиальных) линиях передачи. В случае, если требуется использовать мост для измерения на симметричных линиях передачи и антеннах, то необходимо тщательно изолировать его от земли с помощью изолирующей подставки. Антенноскоп может применяться как в диапазоне коротких, так и ультракоротких волн, и граница его применимости в диапазоне УКВ в основном зависит от конструкции и отдельных схемных элементов прибора.

В качестве измерительного генератора, возбуждающего измерительный мост, вполне достаточно использовать гетеродинный измеритель резонанса. Следует иметь в виду, что высокочастотная мощность, поступающая на измерительный мост, не должна превышать 1 вт, и мощность, равная 0,2 вт, вполне достаточна для нормальной работы измерительного моста. Ввод высокочастотной энергии осуществляется с помощью катушки связи, имеющей 1-3 витка, степень связи которой с катушкой контура гетеродинного измерителя резонанса регулируется так, чтобы при отключенном испытываемом образце измерительный прибор давал полное отклонение. Следует учитывать, что при слишком сильной связи градуировка частоты гетеродинного измерителя резонанса несколько смещается. Чтобы не допустить ошибок, рекомендуется прослушивать тон измерительной частоты по точно отградуированному приемнику.

Проверка работоспособности измерительного моста осуществляется подключением к измерительному гнезду безындукционного резистора, имеющего точно известное сопротивление. Переменное сопротивление, при котором достигается баланс измерительной схемы, должно точно равняться (если измерительный мост правильно сконструирован) испытываемому сопротивлению. Эта же операция повторяется для нескольких сопротивлений при разных измерительных частотах. При этом выясняется частотный диапазон работы прибора. Вследствие того, что схемные элементы измерительного моста в диапазоне УКВ имеют уже комплексный характер, баланс моста становится неточным, и если в диапазоне 2 м его еще можно добиться, тщательно выполнив конструкцию моста, то в диапазоне 70 см рассмотренный измерительный мост совершенно неприменим.

После проверки работоспособности измерительного моста его можно использовать для практических измерений.

На рис. 14-17 изображена конструкция антенноскопа, предложенная W 2AEF.

Определение входного сопротивления антенны

Измерительное гнездо измерительного моста непосредственно подключается к зажимам питания антенны. Если резонансная частота антенны была измерена ранее с помощью гетеродинного измерителя резонанса, то мост питается высокочастотным напряжением этой частоты. Изменяя переменное сопротивление, добиваются нулевого показания измерительного прибора; при этом считываемое сопротивление равно входному сопротивлению антенны. Если же резонансная частота антенны заранее не известна, то частоту, питающую измерительный мост, изменяют До тех пор, пока не получают однозначного баланса измерительного моста. При этом частота, обозначенная на шкале измерительного генератора, равна резонансной частоте антенны, а сопротивление, полученное по шкале переменного сопротивления, равно входному сопротивлению антенны. Изменяя параметры схемы согласования, можно (не изменяя частоты возбуждения высокочастотного измерительного моста) получить заданное входное сопротивление антенны, контролируя его по антенноскопу.

Если проводить измерение непосредственно в точках питания антенны неудобно, то в этом случае между измерительным мостом можно включить линию, имеющую электрическую длину Я/2 или длину, кратную этой длине (2·λ/2, 3·λ/2, 4·λ/2 и т. д.) и обладающую любым волновым сопротивлением. Как известно, такая линия трансформирует сопротивление, подключенное к ее входу, в отношении 1: 1, и поэтому ее включение не отражается на точности измерения входного сопротивления антенны с помощью высокочастотного измерительного моста.

Определение коэффициента укорочения высокочастотной линии передачи

Точная длина λ/2 отрезка линии также может быть определена с помощью антенноскопа.

Достаточно длинный свободно подвешенный отрезок линии на одном конце замыкается, а другим концом подключается к измерительному гнезду моста. Переменное сопротивление устанавливается в нулевое положение. Затем медленно изменяют частоту гетеродинного измерителя резонанса, начиная с низких частот, и переходят к более высоким частотам, до тех пор пока не достигается баланс моста. Для этой частоты электрическая длина точно равна λ/2. После этого несложно определить коэффициент укорочения линии. Например, для отрезка коаксиального кабеля длиной 3,30 м при частоте измерений 30 Мгц (10 м ) достигается первый баланс моста; отсюда λ/2 равно 5,00 м . Определяем коэффициент укорочения: $$k=\frac{геометрическая длина}{эектрическая длина}=\frac{3,30}{5,00}=0,66.$$

Так как баланс моста имеет место не только при электрической длине линии, равной λ/2, но и при длинах, кратных ей, то следует найти второй баланс моста, который должен быть при частоте 60 Мгц. Длина линии для этой частоты равна 1λ. Полезно помнить, что коэффициент укорочения коаксиальных кабелей равен приблизительно 0,65, ленточных кабелей - 0.82 и двухпроводных линий с воздушной изоляцией - приблизительно 0,95. Так как измерение коэффициента укорочения с помощью антенноскопа несложно, то следует конструировать все схемы трансформаторов, используя методику измерения коэффициента укорочения, описанную выше.

Антенноскоп можно также использовать для проверки точности размеров λ/2 линии. Для этого к одному концу линии подключается резистор с сопротивлением меньше 500 ом , а другой конец линии подключается к измерительному гнезду моста; при этом переменное сопротивление (в случае, если линия имеет электрическую длину, в точности равную λ/2) равняется сопротивлению, подключенному к другому концу линии.

С помощью антенноскопа может быть определена также точная электрическая длина λ/4 линии. Для этого свободный конец линии не замыкается, и, изменяя частоту гетеродинного измерителя резонанса таким же образом, как было описано выше, определяют самую низкую частоту, при которой (при нулевом положении переменного сопротивления) достигается первый баланс мостовой схемы. Для этой частоты электрическая длина линии точно равна λ/4. После этого можно определить трансформирующие свойства λ/4 линии и рассчитать ее волновое сопротивление. Например, к концу четвертьволновой линии подключается резистор сопротивлением 100 ом .Изменяя переменное сопротивление, добиваются баланса моста при сопротивлении Z M = 36 ом . После подстановки в формулу $Z_{тр}=\sqrt{Z_{M}\cdot{Z}}$ получаем: $Z_{тр}=\sqrt{36\cdot{100}}=\sqrt{3600}=60 ом$. Таким образом, как мы видели, антенноскоп, несмотря на свою простоту, позволяет решить почти все задачи, связанные с согласованием линии передачи с антенной.

В.КИСЕЛЕВ (RA4UF), г.Саранск

На рис.1 приведена схема ВЧ-моста, разработанная на основе конструкции UA9AA .

Как правило, навесной монтаж, применяемый при изготовлении моста, ограничивает диапазон рабочих частот подобных устройств значениями 140...150 МГц. Чтобы обеспечить работу в диапазоне 430 МГц, прибор целесообразно изготовить на двустороннем фольгированном текстолите. Один из удачных вариантов монтажа показан на рис.2 и 3.

На верхней стороне платы (рис.2) расположены два безындукционных резистора R1, R2 с компенсационными конденсаторами С4, С5. На нижней стороне (рис.3) размещаются остальные детали моста. Монтаж выполнен на "пятачках".

Расстояния между "пятачками" определяются размерами используемых деталей. Кружки, обозначенные на рисунках штриховыми линиями, соединены между собой через отверстия в плате.

При изготовлении моста особое внимание следует уделить качеству используемых деталей. Конденсаторы С1, С2 - керамические, безвыводные, типа К10-42, К10-52 или аналогичные. Опорный конденсатор С3 - КДО-2. Подстроечные конденсаторы С4, С5-типа КТ4-21, КТ4-25; остальные конденсаторы - КМ, КЦ. Резисторы R1, R2 должны быть типа МОН, С2-10, С2-33 мощностью 0,5 Вт и иметь одинаковое сопротивление в пределах 20...150 Ом. Если используются резисторы типа МОН, то выводы у них откусываются до основания, которое зачищается и залуживается, а затем припаивается к нужному "пятачку". Резистор R3 - типа СП4-1, СП2-36, безындукционный, с графитовой дорожкой. Этот резистор крепится на боковой стенке из фольгированного текстолита, однако фольга в месте его крепления удаляется. Корпус резистора не соединяется с общим проводом, иначе мост не удастся сбалансировать. Ручка, укрепляемая на оси резистора, должна быть изготовлена из изоляционного материала. Кроме резистора R3, на боковых стенках крепятся разъемы СР-50. Места соединения (стыки) между боковыми стенками и основной платой тщательно пропаиваются.

Мощность сигнала от генератора должна быть около 1 Вт. В качестве генератора могут использоваться, например, IC-706MK2G, варакторный утроитель и т.д.

При проверке балансировки ВЧ-моста в диапазонах VHF и UHF используются только безындукционные резисторы. Точной настройке компенсационных конденсаторов (при одном и том же сопротивлении нагрузки) соответствует неизменный баланс на нескольких диапазонах (например, 7...430 МГц). Если не удастся подобрать достаточное количество безындукционных резисторов для градуировки моста, промежуточные значения шкалы прибора можно отградуировать на НЧ-диапазонах, используя распространенные резисторы, например, типа МЛТ или МТ.

Для измерения реактивности нагрузки потребуется заменить конденсатор С5 переменным (с воздушным диэлектриком и максимальной емкостью около 20 пФ), однако верхний частотный предел измерений ограничен диапазоном 144 МГц, т.к. не удается полностью компенсировать емкость монтажа.

Если в приборе использовать дроссели индуктивностью 200 мкГн, частотный диапазон моста составит 0,1...200 МГц.

Предлагаемая конструкция имеет очень хорошую повторяемость, в отличие от устройств, выполненных с применением навесного монтажа.

Литература

1. Ю.Селевко (UA9AA). Прибор для настройки антенн. Радиолюбитель, 1991, N5, С.32...34.

Радиолюбитель КВ и УКВ. 2/2001, с.18 Похожие материалы: