Самый верный способ проверки оптопар. Оптопара PC817 принцип работы и очень простая проверка

Многим из нас часто приходилось сталкиваться с тем, что из-за одной, вышедшей из строя, детальки перестаёт работать целое устройство. Что бы избежать недоразумений, следует уметь быстро и правильно проверять детали. Этому я и собираюсь Вас научить. Для начала, нам потребуется мультиметр

Транзисторы биполярные

Чаще всего, сгорают в схемах транзисторы. По крайней мере у меня. Проверить их на работоспособность очень просто. Для начала, стоит прозвонить переходы База-Эмиттер и База-Коллектор. Они должны проводить ток в одном направлении, но не пускать в обратном. В зависимости от того, ПНП это транзистор или НПН, ток они будут проводить к Базе или от Базы. Для удобства, можем представить его в виде двух диодов

Так же стоит прозвонить переход Эмиттер-Коллектор. Точнее это 2 перехода. . . Ну в прочем не суть. В любом транзисторе, ток не должен проходить через них в любом направлении, пока транзистор закрыт. Если же на Базу подали напряжение, то ток протекая через переход База-Эмиттер откроет транзистор, и сопротивление перехода Эмиттер-Коллектор резко упадёт, почти до нуля. Учтите, что падение напряжения на переходах транзистора обычно не ниже 0,6В. А у сборных транзисторов (Дарлингтонов) более 1,2В. По этому некоторые «китайские» мультиметры с батарейкой в 1,5В просто не смогут их открыть. Не поленитесь/поскупитесь достать себе мультиметр с «Кроной»!

Учтите, что в некоторых современных транзисторах параллельно с цепью Коллектор-Эмиттер встроен диод. Так что стоит изучить даташит на Ваш транзистор, если Коллектор-Эмиттер звонится в одну сторону!

Если хотя бы одно из утверждений не подтверждается, то транзистор нерабочий. Но прежде чем заменить его, проверьте оставшиеся детали. Возможно причина в них!

Транзисторы униполярные (полевые)

У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от прикладываемого тестового напряжения. Следует заметить, что имеются некоторые исключения.

Если при проверке приложить положительный щуп тестового прибора к затвору транзистора n-типа, а отрицательный - к истоку, зарядится емкость затвора и транзистор откроется. При замере сопротивления между стоком и истоком прибор покажет некоторое сопротивление. Неопытные ремонтники могут принять такое поведение транзистора за его неисправность. Поэтому перед «прозвонкой» канала «сток-исток» замкните накоротко все ножки транзистора, чтобы разрядить емкость затвора. После этого сопротивление сток-исток должно стать бесконечным. В противном случае транзистор признается неисправным.

Учтите ещё, что в современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод поэтому канал «сток-исток» при проверке ведет себя как обычный диод. Для того чтобы избежать досадных ошибок, помните о наличии такого диода и не примите это за неисправность транзистора. Проверить это легко, пролистав даташит на Ваш экземпляр.

Конденсаторы – ещё одна разновидность радиодеталей. Они тоже довольно часто выходят из строя. Чаще всего умирают электролитические, плёнки и керамика портятся несколько реже. . .

Для начала, платы стоит обследовать визуально. Обычно мёртвые электролиты надуваются, а многие даже взрываются. Присмотритесь! Керамические конденсаторы не надуваются, но могут взорваться, что тоже заметно! Их, как и электролиты надо прозванивать. Ток они проводить не должны.

Перед началом электронной проверки конденсатора необходимо провести механическую проверку целостности внутреннего контакта его выводов.

Для этого достаточно поочерёдно согнуть выводы конденсатора под небольшим углом, и аккуратно поворачивая их в разные стороны, а также слегка потягивая на себя, убедиться в их неподвижности. В случае, если хотя бы один вывод конденсатора свободно вращается вокруг своей оси, или свободно вынимается из корпуса, то такой конденсатор считается не пригодным и дальнейшей проверке не подлежит.

Ещё один интересный факт – заряд/разряд конденсаторов. Это можно заметить, если мерять сопротивление конденсаторов, ёмкостью более 10мкФ. Оно есть и у меньших емкостей, но не так заметно выражен! Как только мы подключим щупы, сопротивление будет единицы Ом, но в течении секунды вырастет до бесконечности! Если мы поменяем щупы местами, эффект повторится.

Соответственно, если конденсатор проводит ток, или не заряжается, то он уже ушёл в мир иной.

Резисторы – их больше всего на платах, хотя они не так то уж и часто выходят из строя. Проверить их просто, достаточно сделать одно измерение – проверить сопротивление.

Если оно меньше бесконечности и не равно нулю, то резистор скорее всего пригоден к использованию. Обычно, мёртвые резисторы чёрные – перегретые! Но чёрные бывают и живыми, хотя их тоже стоит заменить. После нагрева, их сопротивление могло измениться от номинального, что плохо повлияет на работу устройства! Вообще стоит прозвонить все резисторы, и если их сопротивление отличается от номинального, то лучше заменить. Заметьте, что отличие от номинала на ± 5% считается допустимым. . .

Проверить диоды по моему проще всего. Померили сопротивление, с плюсом на аноде, показывать должно несколько десятков/сотен Ом. Померили с плюсом на катоде – бесконечность. Если не так, то диод стоит заменить. . .

Индуктивность

Редко, но всё же из строя выходят индуктивности. Причины тому две. Первая – КЗ витков, а вторая – обрыв. Обрыв вычислить легко – достаточно проверить сопротивление катушки. Если оно меньше бесконечности, то всё ОК. Сопротивление индуктивностей обычно не более сотен Ом. Чаще всего несколько десятков. . .

КЗ между витков вычислить несколько труднее. Надо проверить напряжение самоиндукции. Это работает только на дросселях/трансформаторах, с обмотками в хотя бы 1000 витков. Надо подать импульс низковольтный на обмотку, А после, замкнуть эту обмотку лампочкой газоразрядной. Фактически, любя ИН-ка. Импульс обычно подают, слегка касаясь контактов КРОНЫ. Если ИН-ка в итоге мигнёт, то всё норм. Если нет, то либо КЗ витков, либо очень мало витков. . .

Как видите, способ не очень точный, и не очень удобный. Так что сначала проверьте все детали, и лишь потом грешите на КЗ витков!

Оптопары

Оптопара фактически состоит из двух устройств, поэтому проверять её немного сложнее. Сначала, надо прозвонить излучающий диод. Он должен как и обычный диод прозваниваться в одну сторону и служить диэлектриком в другую. Затем надо подав питание на излучающий диод померить сопротивление фотоприёмника. Это может быть диод, транзистор, тиристор или симистор, в зависимости от типа оптопары. Его сопротивление должно быть близким к нулю.

Затем убираем питание с излучающего диода. Если сопротивление фотоприёмника выросло до бесконечности, то оптопара целая. Если что-то не так, то её стоит заменить!

Тиристоры

Ещё один важный ключевой элемент – тиристор. Так же любит выходить из строя. Тиристоры так же бывают симметричные. Называются симисторы! Проверить и те и другие просто.

Берём омметр, плюсовой щуп подключаем к аноду, минусовой к катоду. Сопротивление равно бесконечности. Затем управляющий электрод (УЭ) подсоединяем к аноду. Сопротивление падает до где-то сотни Ом. Затем УЭ отсоединяем от анода. По идее, сопротивление тиристора должно остаться низким – ток удержания.

Но учтите, что некоторые «китайские» мультиметры могут выдавать слишком маленький ток, так что если тиристор закрылся, ничего страшного! Если он всё же открыт, то убираем щуп от катода, а через пару секунд присоединяем обратно. Теперь тиристор/симистор точно должен закрыться. Сопротивление равно бесконечности!

Если некоторые тезисы не совпадают с действительностью, то Ваш тиристор/симистор нерабочий.

Стабилитрон – фактически один из видов диода. По этому проверяется он так же. Заметим, что падение напряжения на стабилитроне, с плюсом на катоде равно напряжению его стабилизации – он проводит в обратную сторону, но с бОльшим падением. Чтоб это проверить, мы берём блок питания, стабилитрон и резистор на 300...500Ом. Включаем их как на картинке ниже и меряем напряжение на стабилитроне.

Мы плавно подымаем напряжение блока питания, и в какой-то момент, на стабилитроне напряжение перестаёт расти. Мы достигли его напряжения стабилизации. Если этого не случилось, то либо стабилитрон нерабочий, либо надо ещё повысить напряжение. Если Вы знаете его напряжение стабилизации, то прибавьте к нему 3 вольта и подайте. Затем повышайте и если стабилитрон не начал стабилизировать, то можете быть уверены, что он неисправен!

Стабисторы

Стабисторы – одна из разновидностей стабилитронов. Единственное их отличие в том, что при прямом включении – с плюсом на аноде, падение напряжения на стабисторе равно напряжению его стабилизации, а в другую сторону, с плюсом на катоде, ток они не проводят вообще. Достигается это включением нескольких кристаллов-диодов последовательно.

Учтите, что мультиметр с напряжением питания в 1,5В чисто физически не сможет вызвонить стабистор скажем на 1,9В. По этому включаем наш стабистор как на картинке ниже и меряем напряжение на нём. Подать надо напряжение около 5В. Резистор взять сопротивлением в 200...500Ом. Повышаем напряжение, меряя напряжение на стабисторе.

Если на какой то точке оно перестало расти, или стало расти очень медленно, то это и есть его напряжение стабилизации. Он рабочий! Если же он проводит ток в обе стороны, или имеет крайне низкое падение напряжения в прямом включении, то его стоит заменить. По видимому, он сгорел!

Проверить различного рода шлейфы, переходники, разъёмы и др. довольно просто. Для этого надо прозвонить контакты. В шлейфе каждый контакт должен звониться с одним контактом на другой стороне. Если контакт не звонится ни с каким другим, то в шлейфе обрыв. Если же он звонится с несколькими, то скорее всего в шлейфе КЗ. Тоже самое с переходниками и разъёмами. Те из них, которые с обрывом или КЗ считаются бракованными и использованию не подлежат!

Микросхемы/ИМС

Их великое множество, они имеют много выводов и выполняют разные функции. Поэтому проверка микросхемы должна учитывать её функциональное назначение. Точно убедиться в целости микросхем довольно трудно. Внутри каждая представляет десятки-сотни транзисторов, диодов, резисторов и др. Есть такие гибриды, в которых одних только транзисторов более 2000000000 штук.

Одно можно сказать точно – если Вы видите внешние повреждения корпуса, пятна от перегрева, раковины и трещины на корпусе, отставшие выводы, то микросхему стоит заменить – она скорее всего с повреждением кристалла. Греющаяся микросхема, назначение которой не предусматривает её нагрева, должна быть так же заменена.

Полная проверка микросхем может осуществляться только в устройстве, где она подключена так, как ей полагается. Этим устройством может быть либо ремонтируемая аппаратура, либо специальная, проверочная плата. При проверке микросхем используются данные типового включения, имеющиеся в спецификации на конкретную микросхему.

Ну всё, ни пуха Вам, и поменьше горелых деталек!

Описание, характеристики, Datasheet и методы проверки оптронов на примере PC817.

В продолжение темы «Популярные радиодетали при ремонтах импульсных блоков питания» разберем еще одну деталь- оптопара (оптрон) PC817. Он состоит из светодиода и фототранзистора. Между собой электрически никак не связанны, благодаря чему на основе PC817 можно реализовать гальваническую развязку двух частей схемы — например с высоким напряжением и с низким. Открытие фототранзистора зависит от освещенности светодиодом. Как это происходит более подробно я разберу в следующей статье где в экспериментах подавая сигналы с генератора и анализируя его при помощи осциллографа можно понять более точную картину работы оптопары.

Еще в других статьях я расскажу о нестандартном использовании оптрона первая в роли , а во второй . И используя эти схемные решения соберу очень простой тестер оптопар. Которому не не нужны никакие дорогие и редкие приборы, а всего лишь несколько дешевых радиодеталей.

Деталь не редкая и не дорогая. Но от нее зависит очень многое. Она используется практически в каждом ходовом (я не имею ввиду каком нибудь эксклюзивном) импульсном БЛОКЕ ПИТАНИЯ и выполняет роль обратной связи и чаще всего в связке тоже с очень популярной радиодеталью TL431

Для тех читателей, кому легче информацию воспринимать на слух, советуем посмотреть видео в самом низу страницы.

Оптопара (Оптрон) PC817

Краткие характеристики:

Корпус компактный:

  • шаг выводов – 2,54 мм;
  • между рядами – 7,62 мм.

Производитель PC817 – Sharp, встречаются другие производители электронных компонентов выпускают аналоги- например:

  • Siemens – SFH618
  • Toshiba – TLP521-1
  • NEC – PC2501-1
  • LITEON – LTV817
  • Cosmo – KP1010

Кроме одинарного оптрона PC817 выпускаются и другие варианты:

  • PC827 - сдвоенный;
  • PC837 – строенный;
  • PC847 – счетверенный.

Проверка оптопары

Для быстрой проверки оптопары я провел несколько тестовых экспериментов. Сначала на макетной плате.

Вариант на макетной плате

В результате удалось получить очень простую схему для проверки PC817 и других похожих оптронов.

Первый вариант схемы

Первый вариант я забраковал по той причине что он инвертировал маркировку транзистора с n-p-n на p-n-p

Поэтому чтобы не возникало путаницы я изменил схему на следующую;

Второй вариант схемы

Второй вариант работал правильно но неудобно было распаять стандартную панельку

под микросхему

Панелька SCS- 8

Третий вариант схемы

Самый удачный

Uf — напряжение на светодиоде при котором начинает открываться фототранзистор.

в моем варианте Uf = 1.12 Вольт.

В результате получилась такая очень простая конструкция.

ЖК телевизоров, в маленькой частной мастерской. Тема эта достаточно рентабельная, и если заниматься преимущественно блоками питания и инверторами, не слишком сложная. Как известно, питается ЖК телевизор, как практически и вся современная электронная техника, от импульсного блока питания. Последний же, содержит в своем составе деталь, под названием . Деталь эта предназначена для гальванической развязки цепей, что часто бывает необходимо в целях безопасности для работы схемы устройства. В составе этой детали находятся, обычные светодиод и фототранзистор. Как же оптрон работает? Упрощенно говоря, это можно описать, как что-то типа своего рода маломощного , с контактами на замыкание. Далее приведена схема оптопары:

Схема оптопары

А вот тоже самое, но уже со странички официального даташита:

Распиновка оптопары

Ниже приведена информация из даташита, в более полном варианте:

Корпус оптопары

Оптроны часто выпускается в корпусе Dip, по крайней мере те, которые используются в импульсных блоках питания, и имеют 4 ножки.

Оптопара на фото

Первая ножка микросхемы, по стандарту обозначается ключом, точкой на корпусе микросхемы, она же анод светодиода, далее номера ножек идут по окружности, против часовой стрелки.

Проверка оптрона

Как можно проверить оптрон? Например так, как на следующей схеме:

Схема проверки оптрона

В чем суть такой проверки? Наш фототранзистор, когда на него попадет свет от внутреннего светодиода, сразу перейдет в открытое состояние, и его сопротивление резко уменьшится, с очень большого сопротивления, до 40-60 Ом. Так как мне эти микросхемы, оптроны требуется тестировать регулярно, решил вспомнить о том, что я ведь не только электронщик, но еще и радиолюбитель), и собрать какой нибудь пробничек, для быстрой проверки оптопары. Пробежался по схемам в инете, и нашел следующее:

Схема конечно очень простая, красный светодиод сигнализирует о работоспособности внутреннего светодиода, а зеленый, о целости фототранзистора. Поиск готовых устройств собираемых радиолюбителями, выдал фото простых пробничков, подобных этому:

Устройство для проверки оптопары с интернета

Это все конечно очень хорошо, но демонтировать каждый раз оптопару а после запаивать ее обратно - это же не наш метод:-). Требовалось устройство для удобной и быстрой проверки работоспособности оптопары, обязательно без выпаивания, плюс замахнулся при этом еще и на звуковую, и визуальную индикацию:-).

Звуковой пробник - схема

У меня был собран ранее простой звуковой пробничек по этой схеме, со звуковой и визуальной индикацией, с питанием от полутора вольт, батарейки АА.

Простой звуковой пробник

Решил, что это то что нужно, сразу готовый полуфабрикат), вскрыл корпус, ужаснулся своему полунавесному монтажу), времен первых лет, изучения мною радиодела. Тогда изготавливал плату, путем прорезания канавок в фольгированном текстолите, резаком. Просьба не пугаться), глядя на этот колхоз.

Внутренности и детали

Решено было пойти, путем изготовления аналога, своего рода пинцета, для быстрой проверки оптрона, в одно касание. Были выпилены из текстолита две маленьких полоски, и посередине их, была проведа бороздка резаком.

Контактные пластины из текстолита

Затем был нужен сжимающий механизм, с пружинкой. В ход пошла старая гарнитура от телефона, вернее клипса, для крепления на одежду, от нее.

Прищепка от гарнитуры

Дело было за малым, подпаять провода. и закрепить пластинки на клипсе с помощью термоклея. Получилось снова колхозно, как без этого), но на удивление крепко.

Пинцет для измерения самодельный

Провода были взяты, от разъемов подключения к материнской плате, корпусных кнопок системного блока, и светодиодов индикации. Единственный нюанс, на схеме у меня на один из щупов от мультиметра, подключаемых к пробнику посажена земля, сделайте ее контакт, если будете повторять, обязательно напротив земли питания светодиода оптрона, во избежания очень быстрого разряда батареи, при замыкании плюса питания, на минус батареи. Схемку распиновки пинцета, рисовать думаю будет лишнее, все понятно и так без труда.

Окончательный вид пробника оптронов

Так выглядит готовое устройство, причем сохранившее свой функционал звукового пробника, путем подключения через стандартные гнезда, щупов от мультиметра. Первые испытания показали, что 40 ом в открытом состоянии фототранзистора между выводами эмиттер - коллектор, для такого пробника, несколько многовато. Звук пробника был приглушен, и светодиод светил не очень ярко. Хотя для индикации работоспособности оптрона, этого было уже достаточно. Но ведь мы к полумерам не привыкли). В свое время собирал расширенный вариант, схемы этого звукового пробника, где обеспечено измерение при сопротивлении между щупами, до 650 Ом. Схему расширенного варианта привожу ниже:

Схема 2 - звуковой пробник

Данная схема отличается от оригинала, только наличием еще одного транзистора, и резистора в его базовой цепи. Печатную плату расширенной версии пробника, привел на рисунке ниже, она будут прикреплена в архиве .

Печатная плата на звуковой пробник

Данный пробник показал себя при проверке, достаточно удобным в работе, даже в таком, как есть варианте, после проведения на днях апгрейда, недостаток с тихим звучанием, и тусклым свечением светодиода, наверняка будет устранен. Всем удачных ремонтов! AKV .

Обсудить статью ПРОБНИК ДЛЯ ПРОВЕРКИ ОПТОПАР

С помощью предлагаемого пробника можно проверить микросхемы NE555 (1006ВИ1) и различные оптоприборы: оптотранзисторы, оптотиристоры, оптосимисторы, опторезисторы. И именно с этими радиоэлементами простые методы не проходят, так как просто прозвонить такую деталь не получится. Но в простейшем случае можете провести испытание оптопары используя такую технологию:

С помощью цифрового мультиметра:


Здесь 570 - это милливольты, которые падают на открытом переходе к-э оптотранзистора. В режиме прозвонки диода измеряется напряжение падения. В режиме "диод" мультиметр на щупы выводит напряжение 2 вольта импульсное, прямоугольной формы, через добавочный резистор, и при подключении П-Н перехода, АЦП мультиметра измеряет напряжение падающее на нём.

Тестер оптронов и микросхем 555

Мы советуем потратить немного времени и сделать данный тестер, так как оптроны всё чаще используют в различных радиолюбительских конструкциях. А про знаменитую КР1006ВИ1 вообще молчу - её ставят почти везде. Собственно на проверяемой микросхеме 555 собран генератор импульсов, о работоспособности которого свидетельствует перемаргивание светодиодов HL1, HL2. Далее начинается пробник оптопар.


Работает он так. Сигнал с 3-й ножки 555 через резистор R9 попадает на один вход диодного моста VDS1, если к контактам А (анод) и К (катод) подключен исправный излучающий элемент оптопары, то через мост будет протекать ток, заставляя моргать светодиод HL3. Если принимающий элемент оптопары тоже исправен, то он будет проводить ток на базу VT1 открывая его в момент зажигания HL3, который будет проводить ток и HL4 тоже будет моргать.


P.S. Некоторые 555 не запускаютса с конденсатором в пятой ноге, но это не означает их неисправность, поэтому если HL1, HL2 не заморгали - замкните с2 накоротко, но если и после этого указанные светодиоды не стали мигать - то микросхема NE555 однозначно неисправна. Желаю удачи. С уважением, Андрей Жданов (Мастер665).

Оптрон это электронный прибор, состоящий из источника света и фотоприёмника. Роль источника света выполняет светодиод инфракрасного излучения с длиной волны в пределах 0,9...1,2 мкм, а приемника фототранзисторы, фотодиоды, фототиристоры и др., связанные оптическим каналом и объединённые в один корпус. Принцип работы оптрона состоит в преобразовании электрического сигнала в свет, а затем его передаче по оптическому каналу и преобразовании в электрический сигнал. Если роль фотоприемника выполняет фоторезистор, то его световое сопротивление становится в тысячи раз меньше первоначального темнового, если фототранзистор, то воздействие на его базу создает аналогичный эффект, как и при подаче тока в базу обычного транзистора, и он открывается. Обычно оптроны и оптопары используют с целью гальванической развязки

Этот пробник, предназначен для проверки большого количества видов оптопар: оптотранзисторов, оптотиристоров, оптосимисторов, опторезисторов, а также микросхемы таймера NE555, отечественным аналогом которой является


Модифицированный вариант пробника для проверки оптронов

Сигнал с третьего вывода микросхемы 555 через резистор R9 поступает на один вход диодного моста VDS1, при условии, что к контактам Анод и Катод подсоединен рабочий излучающий элемент оптопары, в таком случае через диодный мост потечет ток, и будет мигать светодиод HL3, при условии что фотоприемник исправен, будет открываться VT1 и загораться HL3, который будет проводить ток, HL4 при этом будет моргать

Данный принцип можно использовать для проверки практически любого оптрона:

Около 570 мили вольт должен показать мультиметр, если оптрон исправен в режиме прозвонки диода, т.к в этом режиме с щупов тестера поступает около 2 вольт, но этого напряжения не достаточно для открытия транзистора, но как только мы подадим питание на светодиод, он откроется и мы увидим на дисплее напряжение которое падает на открытом транзисторе.

Описываемое ниже устройство покажет не только исправность таких популярных оптронов как PC817, 4N3x, 6N135, 6N136 и 6N137, но и их скорость срабатывания. Основа схемы микроконтроллер серии ATMEGA48 или ATMEGA88. Проверяемые компоненты можно подключать и отключать прямо во включенный прибор. Результат проверки покажут светодиоды. Так элемент ERROR светится при отсутствии подключенных оптопар или их неработоспособности. Если элемент исправен, то загорится светодиод OK. Одновременно с ним загорится один или несколько светодиодов TIME, соответствующих скорости срабатывания. Так, для самой медленной оптопары, PC817, будет светится только один светодиод - TIME PC817, соответствующий ее скорости. Для быстрых 6N137 будут гореть все четыре светодиода. Если это не так, то оптопара не соответствует данному параметру. Значения шкалы скорости PC817 - 4N3x - 6N135 - 6N137 соотносятся как 1:10:100:900.


Фьюзы микроконтроллера для прошивки: EXT =$FF, HIGH=$CD, LOW =$E2.

Печатную плату и прошивку можно скачать по ссылке выше.