Сортировка выбором c код. Сортировка выбором. Метод поиска минимального элемента

Урок из серии: «Программирование на языке Паскаль»

Процесс обработки и поиска информации при решении многих задач проходит быстрее и эффективнее, если данные расположены в определенном порядке. Например, различные списки студентов, учащихся, сотрудников — в алфавитном порядке, числовые данные от большего значения к меньшему (или наоборот) и т.д.

Существует довольно много различных методов сортировки массивов , отличающихся друг от друга степенью эффективности, под которой понимается количество сравнений и количество обменов, произведенных в процессе сортировки. Рассмотрим подробно некоторые из них.

Сортировка массива методом простого выбора

При сортировке массива методом выбора применяется базовый алгоритм поиска максимального (минимального) элемента и его номера.

Алгоритм сортировки массива методом выбора:

  1. Для исходного массива выбрать максимальный элемент.
  2. Поменять его местами с последним элементом (после этого самый большой элемент будет стоять на своем месте).
  3. Повторить п.п. 1-2 с оставшимися n-1 элементами, то есть рассмотреть часть массива, начиная с первого элемента до предпоследнего, найти в нем максимальный элемент и поменять его местамис предпоследним (n-1)- м элементом массива, затем с оставшиеся (n-2)-мя элементами и так далее, пока не останется один элемент, уже стоящий на своем месте.

Для упорядочения массива потребуется (n-1) просмотров массива. В процессе сортировки будет увеличиваться отсортированная часть массива, а неотсортированная, соответственно, уменьшаться.

При сортировке данных выполняется обмен содержимого переменных. Для обмена необходимо создавать временную переменную, в которой будет храниться содержимое одной из переменных. В противном случае ее содержимое окажется утерянным.

Задача 1. Массив из 10 элементов отсортировать по возрастанию методом простого перебора.

Напишем процедуру. Входным параметром для неё будет массив. Он же будет и выходным параметром. Поэтому описываем его как параметр-переменная (с ключевым словом var ).

В процедуре внешний цикл по i — определяет длину рассматриваемой части массива. Она будет изменяться от n до 2.

Внутренний цикл по j используется для поиска максимального элемента и его номера. В качестве начального значения максимума разумно взять значение последнего элемента рассматриваемой части массива.

Программный код процедуры:

Программный код основной программы:

program primer_1; const n = 10; type myarray = array of integer; var a:myarray; Procedure sorting1(var a:myarray); {Линейная сортировка (сортировка отбором)} ... begin {main} writeln("Введите исходный массив:"); for i:=1 to n do read(a[i]); sorting1(a); writeln("Отсортированный массив:"); for i:=1 to 10 do write(a[i]," "); writeln; end.

Процесс упорядочения элементов в массиве по возрастанию методом отбора:

Номер элемента 1 2 3 4 5
Исходный массив 8 7 5 4 2
Первый просмотр 2 7 5 4 8
Второй просмотр 2 4 5 7 8
Третий просмотр 2 4 5 7 8
Четвертый просмотр 2 4 5 7 8

При упорядочивании массива по убыванию необходимо перемещать минимальный элемент. Для чего в алгоритме нахождения максимального элемента достаточно знак «>» поменять на знак «<«.

Сортировка массива методом простого обмена (методом пузырька)

Наиболее известным методом сортировки является сортировка пузырьковым методом. Его популярность объясняется запоминающимся названием и простым алгоритмом.

Метод основан на том, что в процессе исполнения алгоритма более «легкие» элементы массива постепенно «всплывают».

Особенностью данного метода является сравнение не каждого элемента со всеми, а сравнение в парах соседних элементов. Выполняется несколько последовательных просмотров массива от начала к концу. Если соседние элементы расположены «неправильно», то они меняются местами.

Алгоритм сортировки массива по возрастанию методом простого обмена:

  1. Начнем просмотр с первой пары элементов (a и a). Если первый элемент этой пары больше второго, то меняем их местами, иначе оставляем без изменения. Затем берем вторую пару элементов (a и a), если второй больше третьего, то также меняем их, далее сравниваем третий и четвертый, и если третий больше четвертого, меняем их местами, и т.д. Последними сравниваем (n-1)-ый и n-ый элементы.При первом обходе массива будут просмотрены все пары элементов массива a[i] и a для i от 1 до (n-1). В результате максимальный элемент массива переместится в конец массива.
  2. Поскольку самый большой элемент находится на своем месте, рассмотрим часть массива без него, то есть с первого до (n-1) — го элемента.Повторим предыдущие действия для этой части массива, в результате чего второй по величине элемент массива переместится на последнее место рассматриваемой части массива, то есть на (n-1) — е место во всем массиве.
  3. Эти действия продолжают до тех пор, пока количество элементов в текущей части массива не уменьшится до двух. В этом случае необходимо выполнить последнее сравнение и упорядочить последние два элемента.

Нетрудно заметить, что для преобразования массива, состоящего из n элементов, необходимо просмотреть его n–1 раз, каждый раз уменьшая диапазон просмотра на один элемент.

Ниже приведен текст процедуры сортировки массива по возрастанию методом пузырька.

Для упорядочения элементов массива по убыванию их значений необходимо при сравнении элементов массива знак «>» заменить на «<«.

Процесс упорядочения элементов в массиве по возрастанию методом обмена:

Номер элемента 1 2 3 4 5
Исходный массив 8 7 5 4 2
Первый просмотр 7 5 4 2 8
Второй просмотр 5 4 2 7 8
Третий просмотр 4 2 5 7 8
Четвертый просмотр 2 4 5 7 8

Все описываемые далее методы следует рассматривать как частные варианты метода, известного под названием метод прямого выбора илисортировка посредством выбора . Общим для этих методов является нахождение (выбор) максимальных или минимальных элементов массива и размещение их в последовательных ячейках массива.

Метод поиска минимального элемента

Суть этого метода (имея в виду выбранные ограничения для рассматриваемого нами числового примера) состоит в следующем.

На первом шаге отыскивается и сохраняется в переменной, например, Xmin минимальное число среди всех чисел массива и его индекс, сохраняемый в другой переменной, например, Imin, а затем проводится обмен местами в массиве найденного минимального числа с первым элементом массива: X:=X; X:=Xmin;.

В нашем примере, минимальное число Xmin=15 находится в ячейке Imin=3, и перестановка первого и минимального чисел приведёт к следующему результату

При i=3 получим Xmin=21 и Imin=4, и после перестановки

При i=5 получим Xmin=34 и Imin=5, и после перестановки

Таким образом, внешний цикл должен выполняться n-1 раз, а число выполнений внутреннего цикла будет уменьшаться от n-1 до 1. Чтобы упорядочить массив по убыванию, следует первое найденное минимальное число обменять местами с последним, второе – с предпоследним и так далее.

Метод поиска максимального элемента

Этот метод отличается от предыдущего только тем, что отыскиваются максимальные элементы. При одинаковой организации циклов при реализации этих методов они дадут прямо противоположные результаты: если один приведёт к возрастанию чисел в массиве, то другой – убыванию, и наоборот.

Метод поиска индекса минимального элемента

Этот метод отличается от метод поиска минимального элемента и его индекса тем, что внутренний цикл используется для поиска только индекса минимального элемента, поэтому перестановки чисел в массиве на каждом шаге i, i=1, 2, …,n-1 придется выполнять с привлечением дополнительной переменной, например, R: R:=X[i]; X[i]:=X; X:=R;.

Метод поиска индекса максимального элемента

Этот метод отличается от предыдущего только тем, что отыскиваются индекс максимального элемента. При одинаковой организации циклов при реализации этих методов они дадут прямо противоположные результаты: если один приведёт к возрастанию чисел в массиве, то другой – убыванию, и наоборот.

Алгоритмы и структуры данных для начинающих: сортировка

Никита Прияцелюк

В этой части мы посмотрим на пять основных алгоритмов сортировки данных в массиве. Начнем с самого простого - сортировки пузырьком - и закончим «быстрой сортировкой» (quicksort) .

Для каждого алгоритма, кроме объяснения его работы, мы также укажем его сложность по памяти и времени в наихудшем, наилучшем и среднем случае.

Также смотрите другие материалы этой серии: , и .

Метод Swap

Для упрощения кода и улучшения читаемости мы введем метод Swap , который будет менять местами значения в массиве по индексу.

Void Swap(T items, int left, int right) { if (left != right) { T temp = items; items = items; items = temp; } }

Пузырьковая сортировка

Сортировка пузырьком - это самый простой алгоритм сортировки. Он проходит по массиву несколько раз, на каждом этапе перемещая самое большое значение из неотсортированных в конец массива.

Например, у нас есть массив целых чисел:

При первом проходе по массиву мы сравниваем значения 3 и 7. Поскольку 7 больше 3, мы оставляем их как есть. После чего сравниваем 7 и 4. 4 меньше 7, поэтому мы меняем их местами, перемещая семерку на одну позицию ближе к концу массива. Теперь он выглядит так:

Этот процесс повторяется до тех пор, пока семерка не дойдет почти до конца массива. В конце она сравнивается с элементом 8, которое больше, а значит, обмена не происходит. После того, как мы обошли массив один раз, он выглядит так:

Поскольку был совершен по крайней мере один обмен значений, нам нужно пройти по массиву еще раз. В результате этого прохода мы перемещаем на место число 6.

И снова был произведен как минимум один обмен, а значит, проходим по массиву еще раз.

При следующем проходе обмена не производится, что означает, что наш массив отсортирован, и алгоритм закончил свою работу.

Public void Sort(T items) { bool swapped; do { swapped = false; for (int i = 1; i < items.Length; i++) { if (items.CompareTo(items[i]) > 0) { Swap(items, i - 1, i); swapped = true; } } } while (swapped != false); }

Сортировка вставками

Сортировка вставками работает, проходя по массиву и перемещая нужное значение в начало массива. После того, как обработана очередная позиция, мы знаем, что все позиции до нее отсортированы, а после нее - нет.

Важный момент: сортировка вставками обрабатывает элементы массива по порядку. Поскольку алгоритм проходит по элементам слева направо, мы знаем, что все, что слева от текущего индекса - уже отсортировано. На этом рисунке показано, как увеличивается отсортированная часть массива с каждым проходом:

Постепенно отсортированная часть массива растет, и, в конце концов, массив окажется упорядоченным.

Давайте взглянем на конкретный пример. Вот наш неотсортированный массив, который мы будем использовать:

Алгоритм начинает работу с индекса 0 и значения 3. Поскольку это первый индекс, массив до него включительно считается отсортированным.

На этом этапе элементы с индексами 0..1 отсортированы, а про элементы с индексами 2..n ничего не известно.

Следующим проверяется значение 4. Так как оно меньше семи, мы должны перенести его на правильную позицию в отсортированную часть массива. Остается вопрос: как ее определить? Это осуществляется методом FindInsertionIndex . Он сравнивает переданное ему значение (4) с каждым значением в отсортированной части, пока не найдет место для вставки.

Итак, мы нашли индекс 1 (между значениями 3 и 7). Метод Insert осуществляет вставку, удаляя вставляемое значение из массива и сдвигая все значения, начиная с индекса для вставки, вправо. Теперь массив выглядит так:

Теперь часть массива, начиная от нулевого элемента и заканчивая элементом с индексом 2, отсортирована. Следующий проход начинается с индекса 3 и значения 4. По мере работы алгоритма мы продолжаем делать такие вставки.

Когда больше нет возможностей для вставок, массив считается полностью отсортированным, и работа алгоритма закончена.

Public void Sort(T items) { int sortedRangeEndIndex = 1; while (sortedRangeEndIndex < items.Length) { if (items.CompareTo(items) < 0) { int insertIndex = FindInsertionIndex(items, items); Insert(items, insertIndex, sortedRangeEndIndex); } sortedRangeEndIndex++; } } private int FindInsertionIndex(T items, T valueToInsert) { for (int index = 0; index < items.Length; index++) { if (items.CompareTo(valueToInsert) > 0) { return index; } } throw new InvalidOperationException("The insertion index was not found"); } private void Insert(T itemArray, int indexInsertingAt, int indexInsertingFrom) { // itemArray = 0 1 2 4 5 6 3 7 // insertingAt = 3 // insertingFrom = 6 // // Действия: // 1: Сохранить текущий индекс в temp // 2: Заменить indexInsertingAt на indexInsertingFrom // 3: Заменить indexInsertingAt на indexInsertingFrom в позиции +1 // Сдвинуть элементы влево на один. // 4: Записать temp на позицию в массиве + 1. // Шаг 1. T temp = itemArray; // Шаг 2. itemArray = itemArray; // Шаг 3. for (int current = indexInsertingFrom; current > indexInsertingAt; current--) { itemArray = itemArray; } // Шаг 4. itemArray = temp; }

Сортировка выбором

Сортировка выбором - это некий гибрид между пузырьковой и сортировкой вставками. Как и сортировка пузырьком, этот алгоритм проходит по массиву раз за разом, перемещая одно значение на правильную позицию. Однако, в отличие от пузырьковой сортировки, он выбирает наименьшее неотсортированное значение вместо наибольшего. Как и при сортировке вставками, упорядоченная часть массива расположена в начале, в то время как в пузырьковой сортировке она находится в конце.

Давайте посмотрим на работу сортировки выбором на нашем неотсортированном массиве.

При первом проходе алгоритм с помощью метода FindIndexOfSmallestFromIndex пытается найти наименьшее значение в массиве и переместить его в начало.

Имея такой маленький массив, мы сразу можем сказать, что наименьшее значение - 3, и оно уже находится на правильной позиции. На этом этапе мы знаем, что на первой позиции в массиве (индекс 0) находится самое маленькое значение, следовательно, начало массива уже отсортировано. Поэтому мы начинаем второй проход - на этот раз по индексам от 1 до n – 1.

На втором проходе мы определяем, что наименьшее значение - 4. Мы меняем его местами со вторым элементом, семеркой, после чего 4 встает на свою правильную позицию.

Теперь неотсортированная часть массива начинается с индекса 2. Она растет на один элемент при каждом проходе алгоритма. Если на каком-либо проходе мы не сделали ни одного обмена, это означает, что массив отсортирован.

После еще двух проходов алгоритм завершает свою работу:

Public void Sort(T items) { int sortedRangeEnd = 0; while (sortedRangeEnd < items.Length) { int nextIndex = FindIndexOfSmallestFromIndex(items, sortedRangeEnd); Swap(items, sortedRangeEnd, nextIndex); sortedRangeEnd++; } } private int FindIndexOfSmallestFromIndex(T items, int sortedRangeEnd) { T currentSmallest = items; int currentSmallestIndex = sortedRangeEnd; for (int i = sortedRangeEnd + 1; i < items.Length; i++) { if (currentSmallest.CompareTo(items[i]) > 0) { currentSmallest = items[i]; currentSmallestIndex = i; } } return currentSmallestIndex; }

Сортировка слиянием

Разделяй и властвуй

До сих пор мы рассматривали линейные алгоритмы. Они используют мало дополнительной памяти, но имеют квадратичную сложность. На примере сортировки слиянием мы посмотрим на алгоритм типа «разделяй и властвуй» (divide and conquer) .

Алгоритмы этого типа работают, разделяя крупную задачу на более мелкие, решаемые проще. Мы пользуемся ими каждый день. К примеру, поиск в телефонной книге - один из примеров такого алгоритма.

Если вы хотите найти человека по фамилии Петров, вы не станете искать, начиная с буквы А и переворачивая по одной странице. Вы, скорее всего, откроете книгу где-то посередине. Если попадете на букву Т, перелистнете несколько страниц назад, возможно, слишком много - до буквы О. Тогда вы пойдете вперед. Таким образом, перелистывая туда и обратно все меньшее количество страниц, вы, в конце концов, найдете нужную.

Насколько эффективны эти алгоритмы?

Предположим, что в телефонной книге 1000 страниц. Если вы открываете ее на середине, вы отбрасываете 500 страниц, в которых нет искомого человека. Если вы не попали на нужную страницу, вы выбираете правую или левую сторону и снова оставляете половину доступных вариантов. Теперь вам надо просмотреть 250 страниц. Таким образом мы делим нашу задачу пополам снова и снова и можем найти человека в телефонной книге всего за 10 просмотров. Это составляет 1% от всего количества страниц, которые нам пришлось бы просмотреть при линейном поиске.

Сортировка слиянием

При сортировке слиянием мы разделяем массив пополам до тех пор, пока каждый участок не станет длиной в один элемент. Затем эти участки возвращаются на место (сливаются) в правильном порядке.

Давайте посмотрим на такой массив:

Разделим его пополам:

И будем делить каждую часть пополам, пока не останутся части с одним элементом:

Теперь, когда мы разделили массив на максимально короткие участки, мы сливаем их в правильном порядке.

Сначала мы получаем группы по два отсортированных элемента, потом «собираем» их в группы по четыре элемента и в конце собираем все вместе в отсортированный массив.

Для работы алгоритма мы должны реализовать следующие операции:

  1. Операцию для рекурсивного разделения массива на группы (метод Sort).
  2. Слияние в правильном порядке (метод Merge).

Стоит отметить, что в отличие от линейных алгоритмов сортировки, сортировка слиянием будет делить и склеивать массив вне зависимости от того, был он отсортирован изначально или нет. Поэтому, несмотря на то, что в худшем случае он отработает быстрее, чем линейный, в лучшем случае его производительность будет ниже, чем у линейного. Поэтому сортировка слиянием - не самое лучшее решение, когда надо отсортировать частично упорядченный массив.

Public void Sort(T items) { if (items.Length <= 1) { return; } int leftSize = items.Length / 2; int rightSize = items.Length - leftSize; T left = new T; T right = new T; Array.Copy(items, 0, left, 0, leftSize); Array.Copy(items, leftSize, right, 0, rightSize); Sort(left); Sort(right); Merge(items, left, right); } private void Merge(T items, T left, T right) { int leftIndex = 0; int rightIndex = 0; int targetIndex = 0; int remaining = left.Length + right.Length; while(remaining > 0) { if (leftIndex >= left.Length) { items = right; } else if (rightIndex >= right.Length) { items = left; } else if (left.CompareTo(right) < 0) { items = left; } else { items = right; } targetIndex++; remaining--; } }

Быстрая сортировка

Быстрая сортировка - это еще один алгоритм типа «разделяй и властвуй». Он работает, рекурсивно повторяя следующие шаги:

  1. Выбрать ключевой индекс и разделить по нему массив на две части. Это можно делать разными способами, но в данной статье мы используем случайное число.
  2. Переместить все элементы больше ключевого в правую часть массива, а все элементы меньше ключевого - в левую. Теперь ключевой элемент находится в правильной позиции - он больше любого элемента слева и меньше любого элемента справа.
  3. Повторяем первые два шага, пока массив не будет полностью отсортирован.

Давайте посмотрим на работу алгоритма на следующем массиве:

Сначала мы случайным образом выбираем ключевой элемент:

Int pivotIndex = _pivotRng.Next(left, right);

Теперь, когда мы знаем ключевой индекс (4), мы берем значение, находящееся по этому индексу (6), и переносим значения в массиве так, чтобы все числа больше или равные ключевому были в правой части, а все числа меньше ключевого - в левой. Обратите внимание, что в процессе переноса значений индекс ключевого элемента может измениться (мы увидим это вскоре).

Перемещение значений осуществляется методом partition .

На этом этапе мы знаем, что значение 6 находится на правильной позиции. Теперь мы повторяем этот процесс для правой и левой частей массива.

Мы рекурсивно вызываем метод quicksort на каждой из частей. Ключевым элементом в левой части становится пятерка. При перемещении значений она изменит свой индекс. Главное - помнить, что нам важно именно ключевое значение, а не его индекс.

Снова применяем быструю сортировку:

И еще раз:

У нас осталось одно неотсортированное значение, а, поскольку мы знаем, что все остальное уже отсортировано, алгоритм завершает работу.

Random _pivotRng = new Random(); public void Sort(T items) { quicksort(items, 0, items.Length - 1); } private void quicksort(T items, int left, int right) { if (left < right) { int pivotIndex = _pivotRng.Next(left, right); int newPivot = partition(items, left, right, pivotIndex); quicksort(items, left, newPivot - 1); quicksort(items, newPivot + 1, right); } } private int partition(T items, int left, int right, int pivotIndex) { T pivotValue = items; Swap(items, pivotIndex, right); int storeIndex = left; for (int i = left; i < right; i++) { if (items[i].CompareTo(pivotValue) < 0) { Swap(items, i, storeIndex); storeIndex += 1; } } Swap(items, storeIndex, right); return storeIndex; }

Заключение

На этом мы заканчиваем наш цикл статей по алгоритмам и структурам данных для начинающих. За это время мы рассмотрели связные списки, динамические массивы, двоичное дерево поиска и множества с примерами кода на C#.

Пожалуй, самый простой алгоритм сортировок – это сортировка выбором. Судя по названию сортировки, необходимо что-то выбирать (максимальный или минимальный элементы массива). Алгоритм сортировки выбором находит в исходном массиве максимальный или минимальный элементы, в зависимости от того как необходимо сортировать массив, по возрастанию или по убыванию. Если массив должен быть отсортирован по возрастанию, то из исходного массива необходимо выбирать минимальные элементы. Если же массив необходимо отсортировать по убыванию, то выбирать следует максимальные элементы.

Допустим необходимо отсортировать массив по возрастанию. В исходном массиве находим минимальный элемент, меняем его местами с первым элементом массива. Уже, из всех элементов массива один элемент стоит на своём месте. Теперь будем рассматривать не отсортированную часть массива, то есть все элементы массива, кроме первого. В неотсортированной части массива опять ищем минимальный элемент. Найденный минимальный элемент меняем местами со вторым элементом массива и т. д. Таким образом, суть алгоритма сортировки выбором сводится к многократному поиску минимального (максимального) элементов в неотсортированной части массива. Отсортируем массив из семи чисел согласно алгоритму «Сортировка выбором».

исходный массив: 3 3 7 1 2 5 0
1)Итак, находим минимальный элемент в массиве. 0 – минимальный элемент
2)Меняем местами минимальный и первый элементы массива.
Текущий массив: 0 3 7 1 2 5 3
3) Находим минимальный элемент в неотсортированной части массива. 1 – минимальный элемент
4) Меняем местами минимальный и первый элементы массива.
Текущий массив: 0 1 7 3 2 5 3
5) min = 2
6) Текущий массив: 0 1 2 3 7 5 3
7)min = 3
8) Текущий массив: 0 1 2 3 7 5 3 в массиве ничего не поменялось, так как 3 стоит на своём месте
9) min = 3
10) Конечный вид массива: 0 1 2 3 3 5 7 – массив отсортирован

Запрограммируем алгоритм сортировки выбором в С++.

// sorting_choices.cpp: определяет точку входа для консольного приложения. #include "stdafx.h" #include #include #include using namespace std; void choicesSort(int*, int); // прототип функции сортировки выбором int main(int argc, char* argv) { srand(time(NULL)); setlocale(LC_ALL, "rus"); cout << "Введите размер массива: "; int size_array; // длинна массива cin >> size_array; int *sorted_array = new int ; // одномерный динамический массив for (int counter = 0; counter < size_array; counter++) { sorted_array = rand() % 100; // заполняем массив случайными числами cout << setw(2) << sorted_array << " "; // вывод массива на экран } cout << "\n\n"; choicesSort(sorted_array, size_array); // вызов функции сортировки выбором for (int counter = 0; counter < size_array; counter++) { cout << setw(2) << sorted_array << " "; // печать отсортированного массива } cout << "\n"; delete sorted_array; // высвобождаем память system("pause"); return 0; } void choicesSort(int* arrayPtr, int length_array) // сортировка выбором { for (int repeat_counter = 0; repeat_counter < length_array; repeat_counter++) { int temp = arrayPtr; // временная переменная для хранения значения перестановки for (int element_counter = repeat_counter + 1; element_counter < length_array; element_counter++) { if (arrayPtr > arrayPtr) { temp = arrayPtr; arrayPtr = arrayPtr; arrayPtr = temp; } } } }

Алгоритм сортировки выбором основан на алгоритме поиска максимального (минимального) элемента. Фактически алгоритм поиска является важнейшей частью сортировки выбором. Так как основная задача сортировки — упорядочивание элементов массива, необходимо выполнять перестановки. Обмен значений элементов сортируемого массива происходит в строках 48 50 . Если поменять знак > в строке 46 на знак меньше, то сортироваться массив будет по убыванию. Результат работы программы показан на рисунке 1.

Рисунок 1 — Сортировка выбором

Было подсчитано, что до четверти времени централизованных компьютеров уделяется сортировке данных. Это потому, что намного легче найти значение в массиве, который был заранее отсортирован. В противном случае поиск немного походит на поиск иголки в стоге сена.

Есть программисты, которые всё рабочее время проводят в изучении и внедрении алгоритмов сортировки. Это потому, что подавляющее большинство программ в бизнесе включает в себя управление базами данных. Люди ищут информацию в базах данных всё время. Это означает, что поисковые алгоритмы очень востребованы.

Но есть одно "но". Поисковые алгоритмы работают намного быстрее с базами данных, которые уже отсортированы. В этом случае требуется только линейный поиск.

В то время как компьютеры находятся без пользователей в некоторые моменты времени, алгоритмы сортировки продолжают работать с базами данных. Снова приходят пользователи, осуществляющие поиск, а база данных уже отсортирована, исходя из той или иной цели поиска.

В этой статье приведены примеры реализации стандартных алгоритмов сортировки.

Сортировка выбором (Selection sort)

Для того, чтобы отсортировать массив в порядке возрастания, следует на каждой итерации найти элемент с наибольшим значением. С ним нужно поменять местами последний элемент. Следующий элемент с наибольшим значением становится уже на предпоследнее место. Так должно происходить, пока элементы, находящиеся на первых местах в массивe, не окажутся в надлежащем порядке.

Код C++

void SortAlgo::selectionSort(int data, int lenD) { int j = 0; int tmp = 0; for (int i=0; idata[k]){ j = k; } } tmp = data[i]; data[i] = data[j]; data[j] = tmp; } }

Пузырьковая сортировка (Bubble sort)

При пузырьковой сортировке сравниваются соседние элементы и меняются местами, если следующий элемент меньше предыдущего. Требуется несколько проходов по данным. Во время первого прохода сраваются первые два элемента в массиве. Если они не в порядке, они меняются местами и затем сравнивается элементы в следующей паре. При том же условии они так же меняются местами. Таким образом сортировка происходит в каждом цикле пока не будет достигнут конец массива.

Код C++

void SortAlgo::bubbleSort(int data, int lenD) { int tmp = 0; for (int i = 0;i=(i+1);j--){ if (data[j]

Сортировка вставками (Insertion sort)

При сортировке вставками массив разбивается на две области: упорядоченную и и неупорядоченную. Изначально весь массив является неупорядоченной областью. При первом проходе первый элемент из неупорядоченной области изымается и помещается в правильном положении в упорядоченной области.

На каждом проходе размер упорядоченной области возрастает на 1, а размер неупорядоченной области сокращается на 1.

Основной цикл работает в интервале от 1 до N-1. На j-й итерации элемент [i] вставлен в правильное положение в упорядоченной области. Это сделано путем сдвига всех элементов упорядоченной области, которые больше, чем [i], на одну позицию вправо. [i] вставляется в интервал между теми элементами, которые меньше [i], и теми, которые больше [i].

Код C++

void SortAlgo::insertionSort(int data, int lenD) { int key = 0; int i = 0; for (int j = 1;j=0 && data[i]>key){ data = data[i]; i = i-1; data=key; } } }

Сортировка слиянием (Merge sort)

Код C++

void SortAlgo::mergeSort(int data, int lenD) { if (lenD>1){ int middle = lenD/2; int rem = lenD-middle; int * L = new int ; int * R = new int ; for (int i=0;i

Быстрая сортировка (Quick sort)

Быстрая сортировка использует алгоритм "разделяй и властвуй". Она начинается с разбиения исходного массива на две области. Эти части находятся слева и справа от отмеченного элемента, называемого опорным. В конце процесса одна часть будет содержать элементы меньшие, чем опорный, а другая часть будет содержать элементы больше опорного.

Код C++

void SortAlgo::quickSort(int * data, int const len) { int const lenD = len; int pivot = 0; int ind = lenD/2; int i,j = 0,k = 0; if (lenD>1){ int * L = new int ; int * R = new int ; pivot = data; for (i=0;i