Какова главная функция иерархической структуры памяти. Реферат: Иерархия памяти, кэширование. Общая классификация программного обеспечения

Память – один из блоков ЭВМ, состоящий из запоминающих устройств (ЗУ) и предназначенный для запоминания, хранения и выдачи информации (алгоритма обработки данных и самих данных).

Основными характеристиками отдельных ЗУ являются емкость памяти, быстродействие и стоимость хранения единицы информации (бита).

Быстродействие (задержка) памяти определяется временем доступа и длительностью цикла памяти. Время доступа представляет собой промежуток времени между выдачей запроса на чтение и моментом поступления запрошенного слова из памяти. Длительность цикла памяти определяется минимальным временем между двумя последовательными обращениями к памяти.

Требования к увеличению емкости и быстродействия памяти, а также к снижению ее стоимости являются противоречивыми.Чем больше быстродействие, тем технически труднее достигается и дороже обходится увеличение емкости памяти.

Как и большинство устройств ЭВМ, память имеет иерархическую структуру. Обобщённая модель такой структуры, отражающая многообразие ЗУ и их взаимодействие, представлена на рис. 36. Все запоминающие устройства обладают различным быстродействием и емкостью. Чем выше уровень иерархии, тем выше быстродействие соответствующей памяти, но меньше её емкость.

К самому высокому уровню - сверхоперативному - относятся регистры управляющих и операционных блоков процессора, сверхоперативная память, управляющая память, буферная память (кэш-память).

На втором оперативном уровне находится оперативная память (ОП), служащая для хранения активных программ и данных, то есть тех программ и данных, с которыми работает ЭВМ.

На следующем более низком внешнем уровне размещается внешняя память.

Рис. 36. Иерархическая структура памяти

Местная память (регистровая память процессора) входит в состав ЦП (регистры управляющих и операционных блоков процессора) и предназначена для временного хранения информации. Она имеет малую ёмкость и наибольшее быстродействие. Такая память построена на базе регистров общего назначения, которые конструктивно совмещены с процессором ЭВМ. Этот тип ЗУ используется для хранения управляющих и служебных кодов, а также информации, к которой наиболее часто обращается процессор при выполнении программы.

Иногда в архитектуре ЭВМ регистровая память организуется в виде сверхоперативного ЗУ с прямой адресацией. Такая память служит для хранения операндов, данных и служебной информации, необходимой процессору.

Управляющая память предназначена для хранения управляющих микропрограмм процессора и выполняется в виде постоянного ЗУ (ПЗУ) или программируемого постоянного ЗУ (ППЗУ). В системах с микропрограммным способом обработки информации УП применяется для хранения однажды записанных микропрограмм, управляющих программ, констант.

В функциональном отношении в качестве буферной памяти рассматривается кэш-память, которая размещается между основной (оперативной) памятью и процессором. Основное назначение кэш-памяти - кратковременное хранение и выдача активной информации процессору, что сокращает число обращений к основной памяти, скорость работы которой меньше, чем кэш-памяти. Кэш-память не является программно доступной. В современных ЭВМ различают кэш первого и второго уровней. Кэш первого уровня интегрирована с блоком предварительной выборки команд и данных ЦП и служит, как правило, для хранения наиболее часто используемых команд. Кэш второго уровня служит буфером между ОП и процессором. В некоторых ЭВМ существует кэш-память отдельно для команд и отдельно для данных.

Оперативная память (ОЗУ)служит для хранения информации, непосредственно участвующей в вычислительном процессе. Из ОЗУ в процессор поступают коды и операнды, над которыми производятся предусмотренные программой операции, из процессора в ОЗУ направляются для хранения промежуточные и конечные результаты обработки информации.

Внешняя память (ВнП) используется для хранения больших массивов информации в течении продолжительного периода времени. Обычно ВнП не имеет непосредственной связи с процессором. В качестве носителя используются магнитные диски (гибкие и жёсткие), лазерные диски и др.

Сравнительно небольшая емкость оперативной памяти (8 - 64 Мбайта) компенсируется практически неограниченной емкостью внешних запоминающих устройств. Однако эти устройства сравнительно медленные - время обращения за данными для магнитных дисков составляет десятки микросекунд. Для сравнения: цикл обращения к оперативной памяти (ОП) составляет 50 нс. Исходя из этого, вычислительный процесс должен протекать с возможно меньшим числом обращений к внешней памяти.

). Означает, что различные виды памяти образуют иерархию, на различных уровнях которой расположены памяти с отличающимися временем доступа, сложностью, стоимостью и объемом. Возможность построения иерархии памяти вызвана тем, что большинство алгоритмов обращаются в каждый промежуток времени к небольшому набору данных, который может быть помещен в более быструю, но дорогую и поэтому небольшую, память (см. en:locality of reference). Использование более быстрой памяти увеличивает производительность вычислительного комплекса. Под памятью в данном случае подразумевается устройство хранения данных (запоминающее устройство) в Вычислительной технике или компьютерная память .

При проектировании высокопроизводительных компьютеров и систем необходимо решить множество компромиссов, например, размеры и технологии для каждого уровня иерархии. Можно рассматривать набор различных памятей (m 1 ,m 2 ,…,m n), находящихся в иерархии, то есть каждый m i уровень является как бы подчиненным для m i-1 уровня иерархии. Для уменьшения времени ожидания на более высоких уровнях, низшие уровни могут подготавливать данные укрупненными частями с буферизацией и, по наполнению буфера, сигнализировать верхнему уровню о возможности получения данных.

Часто выделяют 4 основных (укрупненных) уровня иерархии:

  1. Внутренняя память процессора (регистры, организованные в регистровый файл и кэш процессора).
  2. ОЗУ системы (RAM) и вспомогательных карт памяти.
  3. Накопители с «горячим» доступом (On-line mass storage) - или вторичная компьютерная память. Жесткие диски и твердотельные накопители, не требующие длительных (секунды и больше) действий для начала получения данных
  4. Накопители, требующие переключения носителей (Off-line bulk storage) - или третичная память. Сюда относятся магнитные ленты , ленточные и дисковые библиотеки, требующие длительной перемотки либо механического (или ручного) переключения носителей информации.

Иерархия памяти в современных ПК

В большинстве современных ПК рассматривается следующая иерархия памяти:

  1. Регистры процессора , организованные в регистровый файл - наиболее быстрый доступ (порядка 1 такта), но размером лишь в несколько сотен или, редко, тысяч байт.
  2. Кэш процессора 1го уровня (L1) - время доступа порядка нескольких тактов, размером в десятки килобайт
  3. Кэш процессора 2го уровня (L2) - большее время доступа (от 2 до 10 раз медленнее L1), около полумегабайта или более
  4. Кэш процессора 3го уровня (L3) - время доступа около сотни тактов, размером в несколько мегабайт (в массовых процессорах используется с недавнего времени)
  5. ОЗУ системы - время доступа от сотен до, возможно, тысячи тактов, но огромные размеры в несколько гигабайт, вплоть до десятков. Время доступа к ОЗУ может варьироваться для разных его частей в случае комплексов класса NUMA (с неоднородным доступом в память)
  6. Дисковое хранилище - многие миллионы тактов, если данные не были закэшированны или забуферизованны заранее, размеры до нескольких терабайт
  7. Третичная память - задержки до нескольких секунд или минут, но практически неограниченные объемы (ленточные библиотеки).

Большинство программистов обычно предполагает, что память делится на два уровня, оперативную память и дисковые накопители, хотя в ассемблерных языках и ассемблерно-совместимых (типа ) существует возможность непосредственной работы с регистрами. Получение преимуществ от иерархии памяти требует совместных действий от программиста, аппаратуры и компиляторов (а также базовая поддержка в операционной системе):

  • Программисты отвечают за организацию передачи данных между дисками и памятью (ОЗУ), используя для этого файловый ввод-вывод ; Современные ОС также реализуют это как подкачку страниц .
  • Аппаратное обеспечение отвечает за организацию передачи данных между памятью и кэшами.
  • Оптимизирующие компиляторы отвечают за генерацию кода, при исполнении которого аппаратура эффективно использует регистры и кэш процессора.

Многие программисты не учитывают многоуровневость памяти при программировании. Этот подход работает пока приложение не столкнется с падением производительности из-за нехватки производительности подсистемы памяти (memory wall). При исправлении кода (Рефакторинг) необходимо учесть наличие и особенность работы верхних уровней иерархии памяти для достижения наивысшей производительности.

Литература

  • Михаил Гук «Аппаратные средства IBM PC» Санкт-Петербург 1998

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Иерархия памяти" в других словарях:

    иерархия памяти - — Тематики электросвязь, основные понятия EN memory hierarchy …

    Концепция построения взаимосвязи классов разных уровней компьютерной памяти на основании иерархической структуры. Иерархия оперативной памяти реализуемая в вычислительной системе на базе процессора … Википедия

    - (запоминающиеустройства) в вычислит. технике (см. Электронная вычислительная машина)устройства для записи, хранения и воспроизведения информации. В качественосителя информации может выступать физ. сигнал, распространяющийся в среде … Физическая энциклопедия

    У этого термина существуют и другие значения, см. Gerarchia. Иерархия (от др. греч. ἱεραρχία, из ἱερός «священный» и ἀρχή «правление») порядок подчинённости низших звеньев высшим, организация их в структуру типа дерево; принцип управления в … Википедия

    Менеджер памяти часть компьютерной программы (как прикладной, так и операционной системы), обрабатывающая запросы на выделение и освобождение оперативной памяти или (для некоторых архитектур ЭВМ) запросы на включение заданной области памяти … Википедия

    Схема, иллюстрирующая место микроархитектурного уровня в многоуровневой структуре компьютера. В компьютерной инженерии … Википедия

    архитектура контроллера Справочник технического переводчика

    архитектура контроллера - Архитектурой контроллера называют набор его основных компонентов и связей между ними. Типовой состав ПЛК включает центральный процессор, память, сетевые интерфейсы и устройства ввода вывода. Типовая… … Справочник технического переводчика

    - << Intel 80486 >> Центральный процессор … Википедия

    Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/24 декабря 2012. Пока процесс обсужден … Википедия

Книги

  • Лекции по истории Древней Церкви. В 4-х томах (количество томов: 4) , Болотов Василий В.В.. Профессор В. В. Болотов (1854-1900)-выдающийся православный церковный историк, человек энциклопедических знаний, отлично владевший древними классическими и рядом европейских языков; изучил…
  • Информатика Введение в компьютерные науки , Королев Л., Миков А.. В учебнике подробно рассмотрены математическое понятие алгоритма, рекурсивные алгоритмы и рекурсивные структуры данных, алгоритмы сортировки и поиска. Изложены основы теории сложности…

Децентрализация управления предполагает иерархическую орга низацию структуры ЭВМ . Устройство управления главного, или центрального, процессора определяет лишь последовательность работ подчиненных модулей и их инициализацию, после чего они продолжают работу по собственным программам управления. Результаты выполнения требуемых операций представляются ими «вверх по иерархии» для правильной координации всех работ.

Подчиненные модули (контроллеры, адаптеры, КВВ) могут в свою очередь использовать специальные шины или магистрали для обмена информацией. Стандартизация и унификация привели к появлению иерархии шин и к их специализации. Из-за различий в скоростях работы отдельных устройств и структурах ПК появились:

    системная шина - для взаимодействия основных устройств;

    локальная шина - для ускорения обмена видеоданными;

    периферийная шина - для подключения «медленных» периферий­ных устройств.

Иерархический принцип построения и управления характерен не только для структуры ЭВМ в целом, но и для отдельных ее подсистем. Например, по этому же принципу строится система памяти ЭВМ.

Принцип иерархичности памяти

Пользователю, желательно иметь в ЭВМ оперативную память большой информационной емкости и высокого быстродействия. Однако одноуровневое построение памяти не позволяет одновременно удовлетворять этим двум противоречивым требованиям. Поэтому память современных ЭВМ строится по многоуровневому, пирамидальному принципу.

В составе процессоров может иметься сверхоперативное запоминающее устройство небольшой емкости, образованное несколькими десятками или несколькими сотнями регистров с быстрым временем доступа, составляющим один такт процессора (наносекунды, нс). Здесь обычно хранятся данные, непосредственно используемые в обработке.

Следующий уровень образует кэш-память , или память блокнотного типа , представляющая собой буферное запоминающее устройство для хранения активных страниц объемом десятки и сотни Кбайтов. В современных ПК она в свою очередь делится: на кэш L1 (Е п = =16-32 Кбайта с временем доступа 1-2 такта процессора); на кэш L2 (Е п =128-512 Кбайт с временем доступа 3-5 тактов) и даже на кэш L3 (Е п =2-4 Мбайта с временем доступа 8-10 тактов). Кэш-память, как более быстродействующая, предназначается для ускорения выборки команд программы и обрабатываемых данных. Здесь возможна ассоциативная выборка данных. Основной объем программ пользователей и данных к ним размещается в оперативном запоминающем устройстве (емкость - миллионы машинных слов, время выборки - 10-20 тактов процессора).

Часть данных-констант, необходимых операционной системе для управления вычислениями и используемых наиболее часто, может размещаться в постоянном запоминающем устройстве (ПЗУ). На более низких уровнях иерархии находятся внешние запоминающие устройства на магнитных носителях. Они могут быть реализованы на жестких и гибких магнитных дисках, магнитных лентах, магнитооптических дисках и др. Их отличает низкое быстродействие и очень большая емкость.

Организация заблаговременного обмена информационными потоками между ЗУ различных уровней при децентрализованном управлении ими позволяет рассматривать иерархию памяти как абстрактную единую кажущуюся (виртуальную) память. Согласованная работа всех уровней обеспечивается под управлением программ операционной системы. Объём используемой памяти благодаря этому значительно превосходит ОЗУ.

Память ПК - это совокупность отдельных устройств, которые запоминают, хранят и выдают информацию. Отдельные устройства памяти называются запоминающими устройствами (ЗУ). Производительность ПК во многом зависит от состава и характеристик запоминающих устройств, которые в свою очередь различаются принципом действия и назначением. Основными операциями с памятью являются процедуры записи и считывания (выборки). Общее название указанных процедур носит название обращение к памяти. Основные характеристики памяти - это емкость и быстродействие (время обращение к памяти).

Емкость ЗУ измеряется в Байтах (1Байт = 8 Бит), Килобайтах (1 Кбайт= 2 10 Байт), Мегабайтах (1Мбайт= 2 10 Кбайт), Гигабайта (1Гбайт= 2 10 Мбайт), Терабайтах (1Тбайт= 2 10 Гбайт).

Быстродействие измеряется в секундах и в настоящее время находится в пределах от 10 - 2 до 10 - 9 секунд в зависимости от способа доступа к информации.

По способу доступа к хранящейся в них информации ЗУ делятся на: ЗУ с произвольным доступом; ЗУ с прямым доступом; ЗУ с последовательным доступом.

В ЗУ с произвольным доступом время обращения не зависит от места нахождения данных. Такое доступ реализован в регистрах общего назначения, КЭШ-памяти и внутренней памяти ПК.

Носитель информации в ЗУ с прямым доступом непрерывно вращается, в результате данные доступны через некоторый фиксированный промежуток времени. К ЗУ с прямым доступом относятся НЖМД, НМГД, НОД.

ЗУ с последовательным доступом , прежде чем найти необходимые данные, «просматривает» все предыдущие участки памяти. Последовательный доступ реализована в ЗУ, использующих магнитную ленту, например, в стримерах.

Следует отметить, что требования, предъявляемые к емкости и быстродействию ЗУ, являются взаимно противоречивыми с точки зрения технической реализации. Поэтому для эффективного функционирования в ПК память строится по иерархическому принципу, где на разных уровнях иерархии находятся ЗУ, обладающие различными характеристиками. Иерархическая структура памяти ПК представлена на рисунке 1.

При движении от 1-го до 3-го уровня иерархии быстродействие ЗУ уменьшается, а емкость увеличивается.

Иерархическая организация памяти позволяет повысить производительность ПК и предоставить пользователю практически неограниченную емкость памяти.

Назначение и основные характеристики ЗУ 1-го уровня были описаны в лекции 3 Рассмотрим 2-й и 3-й уровень иерархии памяти ПК.

Внешняя память относится к внешним устройствам ПК и используется для долговременного хранения любой информации, которая может когда-либо потребоваться для решения задач. Внешняя память содержит разнообразные виды ЗУ, но наиболее распространенными, имеющимися практически на любом компьютере, являются НЖМД, НГМД и НОД. Указанные накопители предназначены для хранения больших объемов информации, запись и выдача хранимой информации по запросу в оперативное запоминающее устройство.

НЖМД (HDD - hard disk drive) в обиходе называют «винчестером». В отличие от оперативной памяти, НЖМД гарантируют долговременное хранение информации, для чего не требуется постоянное питание компьютера от внешнего источника электроэнергии. Для записи данных в жестких дисках используется магнитный слой. Он покрывает диски, вращающиеся внутри винчестера с огромными скоростями. Вдоль дисков перемещаются головки чтения / записи. Основными характеристика современных НЖГД являются: емкость (до 1 Тбайт); количество пластин (до 5); количество головок (10 головок); среднее время поиска информации (меньше 10 мс); скорость вращения дисков (до 10 тыс. об/мин); вес (меньше 100 г.). Основными производителями НЖМД являются фирмы IBM, Seegate, Toshiba, Fujitsu, Samsung.

НГМД (FDD - floppy disk drive) представляет собой устройство чтения / записи сменных гибких дисков (флоппи-дисков, дискет ). Ранее применялись магнитные диски 2-х размеров: 5,25"" (133 мм) и 3,5» (89 мм). Первые давно исчезли, а 3,5"" используются только для переноса относительно небольших (1,44 Mбайт) объемов информации между компьютерами. Данные на гибких дисках хранятся подобно данным на винчестере за тем лишь исключением, что диск во флоппи-дисководе вращается с много меньшей скоростью и он всего один. Из-за недостаточной герметизации дискеты чаще всего выходят из строя. Таким образом, как носитель информации флоппи-диск крайне ненадежен и в настоящее время применяется все реже.

НОД являются в настоящее время самыми надежными и широко распространенными ЗУ внешней памяти. Считывание информации с оптического диска происходит за счёт регистрации изменений интенсивности отраженного от алюминиевого слоя излучения маломощного лазера.

НОД подразделяются на: CD-ROM (Compact Disc Read Only Memory) - компакт - диск только для чтения; CD-R (Compact Disc Recordable) - однократно записываемый компакт - диск; CD-RW (Compact Disc Rewritable) - перезаписываемый компакт-диск; DVD (Digital Versatile Disk) - универсальный цифровой диск.

Стандартный оптический диск имеет емкость порядка 650-800 Мбайт, емкость DVD диск достигает 17 Гбайт.

DVD диск имея те же габариты, что и обычный оптический компакт-диск, вмещает чрезвычайно много информации - от 4,7 до 17 Гбайт. В настоящее время DVD-диск применяется лишь в двух областях: для хранения видеофильмов (DVD-Video или просто DVD) и сверхбольших баз данных (DVD-ROM, DVD-R). В отличие от CD-ROM, диски DVD записываются с обеих сторон. Более того, с каждой стороны могут быть нанесены один или два слоя информации. Таким образом, односторонние однослойные диски имеют объем 4,7 Гбайт (их часто называют DVD-5, т.е. диски емкостью около 5 Гбайт), двусторонние однослойные - 9,4 Гбайт (DVD-10), односторонние двухслойные - 8,5 Гбайт (DVD-9), а двусторонние двухслойные - 17 Гбайт (DVD-18). В зависимости от объема требующих хранения данных и выбирается тип DVD-диска. Если речь идет о фильмах, то на двусторонних дисках часто хранят две версии одного и того же фильма - одна широкоэкранная, вторая в классическом телевизионном формате.

Архивная память ПК предназначена для длительного и надежного хранения программ и данных. Как видно из рисунка 2.3 хранить информацию можно на дискетах, оптических дисках, съемных НЖМД, магнитной ленте и флэш-памяти. Поскольку трое первых носителей информации описаны выше, а съемный НЖМД принципиально не отличается от обычного НЖМД, отметим основные свойства флэш-памяти.

Флэш-память представляет собой особый вид энергонезависимой перезаписываемой полупроводниковой памяти. Это означает, что она не требует дополнительной энергии для хранения данных (энергия требуется только для записи), допускает изменение (перезапись) хранимых в ней данных и не содержит механически движущихся частей (как обычные НЖМД или НОД) и построена на основе интегральных микросхем.

Информация, записанная на флэш-память, может храниться очень длительное время (несколько лет), и способна выдерживать значительные механические нагрузки (в 5-10 раз превышающие предельно допустимые для обычных НЖМД).

Основное преимущество флэш-памяти перед обычными накопителями состоит в том, что флэш-память потребляет значительно (примерно в 10-20 и более раз) меньше энергии во время работы. В НЖМД, НГМД, НОД, кассетах и других механических носителях информации, бо льшая часть энергии тратится на приведение в движение механики этих устройств. Кроме того, флэш-память компактнее большинства других механических носителей.

Размер носителя флэш-памяти составляет от 20 до 40 мм в длину, в ширину и толщина до 3 мм, емкость достигает 1Гбайт, в зависимости от типа флэш-памяти возможна перезапись информации от 10 тысяч до 1 млн раз.

Благодаря низкому энергопотреблению, компактности, долговечности и относительно высокому быстродействию, флэш-память идеально подходит для использования в качестве накопителя не только в ПК, но и в таких портативных устройствах, как цифровые фото- и видео-камеры, мобильные телефоны, портативные компьютеры, MP3-плейеры, цифровые диктофоны, и т.п. В ближайшие годы флэш-память будет самым применяемым компактным накопителем информации, постепенно вытесняя привычные дискеты.

Память в современных компьютерах строится по иерархическому принципу. Одним из явлений, характерных для фоннеймановских ЭВМ является принцип локальности. Это означает, что за ограниченный промежуток времени каждая выполняемая программа не производит обращений ко всем своим данным и командам равномерно, а склонна обращаться к ограниченной части своего адресного пространства. Например, такая ситуация возникает в научных и инженерных расчетах при решении уравнений, когда выполняются небольшие участки кода, содержащие большое число вложенных циклов и подпрограмм и с их помощью обрабатываются все новые и новые относительно небольшие порции данных с частым обращением к промежуточным результатам. Из этого следует, что для увеличения производительности без существенного увеличения стоимости можно строить память по иерархическому принципу. При этом существует несколько уровней иерархии памяти с различным объемом и временем обращения. Информация распределена по ним для хранения в соответствии с ее важностью, частотой обращения и «срочностью» обслуживания. Каждый уровень иерархии характеризуется определенной стоимостью хранения одного байта (слова) и скоростью выборки байта (слова) или блока из нескольких байтов (слов).

Обычно рассматривается взаимодействие внутри иерархии памяти между двумя соседними уровнями.

Минимальную единицу информации, которая может либо присутствовать, либо отсутствовать на одном из двух взаимодействующих уровней в иерархии, мы будем называть блоком. Размер блока может быть либо фиксированным, либо переменным. Если этот размер зафиксирован, то объем памяти является кратным размеру блока.

При обращении к каждому уровню иерархии возможны два исхода. Либо искомый блок находится на запрашиваемом уровне (попадание – hit) либо он отсутствует (промах – miss) и приходится обращаться к следующему уровню иерархии, обладающему меньшей скоростью выборки. Эффективность механизма хранения данных можно описать долей попаданий (hit rate). Механизм организации каждого уровня иерархии должен обеспечивать возможность размещения любого блока из более низкого уровня иерархии. Отсюда – необходим некий ассоциативный механизм отображения блока из нижележащего уровня иерархии на вышележащий.

Иерархия памяти в ЭВМ показана на рис. 17. Емкость памяти растет сверху вниз на рисунке, стоимость хранения байта (слова) и скорость выборки байта (слова) растет снизу вверх.

Самый верхний уровень иерархии – регистровая память. Емкость регистровой памяти обычно не превышает нескольких десятков (иногда сотен) байт или слов. Физически регистровая память расположена непосредственно в центральном процессоре, поэтому время обращения к памяти минимально и не превышает длительности 1 такта процессора. В регистровой памяти, как ранее уже отмечалось, хранятся наиболее оперативные данные, такие как адреса обрабатываемых в текущий момент ячеек памяти, счетчики циклов, операнды выполняемых в текущий момент арифметических операций.


Массовая оперативная память имеет объем от нескольких десятков килобайт до нескольких сотен мегабайт. В силу ряда технологических особенностей скорость обращения к оперативной памяти растет значительно медленнее, чем скорость работы центральных процессоров и обычно время выборки составляет от 5 до 15 тактов процессора. Для ускорения выборки информации между основной памятью и центральным процессором вводится еще один уровень иерархии – промежуточная, сверхоперативная память или кэш память. Слово cache в переводе с английского яыка означает тайник, тайный склад, потаенный запас. Смысл этого термина состоит в том, что кэш-память невидима, прозрачна для центрального процессора. Работой кэш-памяти управляет контроллер кэш-памяти. Он просматривает обращения центрального процессора к основной памяти и определяет хранятся ли требуемые данные в кэше (cache hit) и,следовательно, могут быть прочитаны из него, или нет (cache miss), и следовательно, придется производить обращение к более медленной основной памяти. Скорость доступа к ячейке кэш-памяти может составлять от 3 до 7 тактов процессора. Кэш-память в свою очередь сама может быть реализована по иерархическому принципу, т.е. может быть разделена на несколько уровней:

· кэш первого уровня, объемом несколько килобайт со временем доступа 2-3 такта, встроенный непосредственно в процессор;

· кэш второго уровня со временем доступа 3-5 тактов и объемом несколько десятков килобайт, расположенный на одной плате с центральным процессором;

· кэш третьего уровня со временем доступа 5-7 тактов и объемом несколько сотен килобайт на системной плате и так далее.

Ниже в этом разделе мы вернемся обсуждению кэш-памяти и рассмотрим ее функционирование подробнее.

Самый нижний уровень иерархии памяти – внешняя память большого объема. Ее объем на несколько порядков больше, чем емкость основной оперативной памяти. Процессор не имеет возможности оперативного доступа данным, расположенным во внешней памяти, и, для обработки, их необходимо пересыоать в основную память. Оперативная память и внешняя память вместе образуют так называемую виртуальную память.

Короткая история вычислительной техники и создания программного обеспечения позволила разработчикам ЭВМ сделать один важный вывод: имеющейся на ЭВМ физической памяти всегда мало для удовлетворения потребностей программиста . Снабжать ЭВМ оперативной памятью огромного размера невыгодно из экономических соображений. Осознание этого факта привело к идее организации виртуальной памяти . Виртуальным называют абстрактный ресурс, который на самом деле физически не существует, но моделируется с помощью имеющихся технических средств.

В системе с виртуальной памятью программы «считают», что им предоставлено некоторое, достаточно большое адресное пространство (пространство, предоставленное программе или группе программ, может существенно превышать объем физической памяти, имеющейся в ЭВМ). При этом рабочее пространство разделяется на блоки – страницы (типичный размер страницы 2–4 Кбайта). Страницы, относящиеся к выполняемой задаче, частично располагаются в быстродействующей памяти, частично на некотором, более медленном и более дешевом запоминающем устройстве. Устройство управления виртуальной памяти отслеживает обращения к памяти, и, если требуемая страница отсутствует в физической памяти, происходит прерывание. Обработчик прерывания производит обращение к внешнему устройству для считывания отсутствующей страницы, после чего выполнение команды, вызвавшей прерывание, повторяется снова. Таким образом, прикладная программа “не замечает”, что ее страница отсутствовала в памяти. Естественно, что из-за необходимости периодических обращений к внешней памяти за отсутствующими страницами скорость выполнения программы снижается. Это снижение скорости есть “необходимое зло” - плата за большой размер доступного адресного пространства. Разработчики процессоров с виртуальной адресацией предусматривают различные средства максимального снижения эффекта замедления.

Системы виртуальной памяти можно разделить на два класса: системы с фиксированным размером блоков, называемых страницами, и системы с переменным размером блоков, называемых сегментами. Ниже рассмотрены оба типа организации виртуальной памяти.