Что дает открытие кэша 3 уровня. Процессоры. Что такое кэш-память и её структура

Всем доброго времени суток. Сегодня мы постараемся растолковать вам такое понятие как кэш. Кэш память процессора – это сверхбыстрый массив обработки данных, скорость которого превышает показатели стандартной ОЗУ раз так в 16–17, если речь идет о DDR4.

Из этой статьи вы узнаете:

Именно объем кэш-памяти позволяет ЦП работать на предельных скоростях, не дожидаясь, пока оперативная память обработает какие-либо данные и не отправит результаты готовых вычислений чипу для дальнейшей их обработки. Аналогичный принцип прослеживается в HDD, только там используется буфер на 8–128 МБ. Другое дело, что скорости гораздо ниже, но процесс работы аналогичен.

Что такое кэш процессора?

Как вообще происходит процесс вычислений? Все данные хранятся в оперативной памяти, которая предназначена для временного хранения важной пользовательской и системной информации. Процессор выбирает для себя определенное количество задач, которые загоняются в сверхбыстрый блок, именуемый кэш-памятью, и начинает заниматься своими прямыми обязанностями.

Результаты вычислений снова отправляются в ОЗУ, но уже в гораздо меньшем количестве (вместо тысячи значений на выходе получаем куда меньше), а на обработку берется новый массив. И так до тех пор, пока работа не будет сделана.

Скорость работы определяется эффективностью оперативной памяти. Но ни один современный модуль DDR4, включая оверклокерские решения с частотами под 4000 МГц, и рядом не стоял с возможностями самого чахлого процессора с его «медленным» КЭШем.

Все потому, что скорость работы ЦП превышает показатели работы ОЗУ в среднем раз в 15, а то и выше. И не смотрите только на параметры частоты, помимо них отличий хватает.
В теории получается, что даже сверхмощные Intel Xeon и AMD Epyc вынуждены простаивать, но по факту оба серверных чипа работают на пределе возможностей. А все потому, что они набирают необходимое количество данных по величине кэша (вплоть до 60 и более МБ) и моментально обрабатывают данные. ОЗУ служит в качестве некоего склада, откуда черпаются массивы для вычислений. Эффективность вычислений компьютера возрастает и все довольны.

Краткий экскурс в историю

Первые упоминания о кэш-памяти датированы концом 80‑х годов. До этого времени скорость работы процессора и памяти были приблизительно одинаковой. Стремительное развитие чипов требовало придумать какой-нибудь «костыль», чтобы повысить уровень быстродействия ОЗУ, однако использовать сверхбыстрые чипы было очень затратно, а потому решились обойтись более экономичным вариантом – внедрением скоростного массива памяти в ЦП.

Впервые модуль кэш-памяти появился в Intel 80386. В то время задержки при работе DRAM колебались в пределах 120 наносекунд, в то время как более современный модуль SRAM сокращал время задержек до внушительных по тем временам 10 наносекунд. Примерная картина более наглядно продемонстрирована в противостоянии HDD против SSD.

Изначально кэш-память распаивалась прямиком на материнских платах, ввиду уровня техпроцесса того времени. Начиная с Intel 80486 8 кб памяти было внедрено непосредственно в кристалл процессора, что дополнительно увеличивало производительность и снижало площадь кристалла.

Данная технология расположения оставалась актуальной лишь до выхода Pentium MMX, после чего SRAM-память была заменена более прогрессивной SDRAM.
Да и процессоры стали гораздо меньше, а потому надобность во внешних схемах отпала.

Уровни кэш-памяти

На маркировке современных ЦП, помимо и , можно встретить такое понятие как размер кэша 1,2 и 3 уровней. Как он определяется и на что влияет? Давайте разбираться простым языком.

  • Кэш первого уровня (L1) – самая важная и быстрая микросхема в архитектуре ЦП. Один процессор может вместить количество модулей, равных числу ядер. Примечательно, что микросхема может хранить в памяти самые востребованные и важные данные только со своего ядра. Объем массива зачастую ограничен показателем в 32–64 КБ.
  • Кэш второго уровня (L2) – падение скорости компенсируется увеличением объема буфера, который доходит до 256, а то и 512 КБ. Принцип действия такой же, как и у L1, а вот частота запроса к памяти ниже, ввиду хранения в ней менее приоритетных данных.
  • Кэш третьего уровня (L3) – самый медленный и объемный раздел среди всех перечисленных. И все равно этот массив гораздо быстрее оперативной памяти. Размер может достигать 20, и даже 60 МБ, если речь касается серверных чипов. Польза от массива огромна: он является ключевым звеном обмена данными между всеми ядрами системы. Без L3 все элементы чипа были бы разрознены.

В продаже можно встретить как двух- так и трехуровневую структуру памяти. Какая из них лучше? Если вы используете процессор лишь для офисных программ и казуальных игр, то никакой разницы не почувствуете. Если же система собирается с прицелом под сложные 3D-игры, архивацию, рендеринг и работу с графикой, то прирост в некоторых случаях будет колебаться от 5 до 10%.
Кэш третьего уровня оправдан лишь в том случае, если вы намерены регулярно работать с многопоточными приложениями, требующими регулярные сложные расчеты. По этой причине в серверных моделях нередко используют кэш L3 больших объемов. Хотя бывают случаи, что и этого не хватает, а потому приходится дополнительно ставить так называемые модули L4, которые выглядят как отдельная микросхема, подключаемая к материнской плате.

Как узнать количество уровней и размер кэша на своем процессоре?

Начнем с того, что сделать это можно 3 способами:

  • через командную строку (только кэш L2 и L3);
  • путем поиска спецификаций в интернете;
  • с помощью сторонних утилит.

Если взять за основу тот факт, что у большинства процессоров L1 составляет 32 КБ, а L2 и L3 могут колебаться в широких пределах, последние 2 значения нам и нужны. Для их поиска открываем командную строку через «Пуск» (вводим значение «cmd» через строку поиска).

Система покажет подозрительно большое значение для L2. Необходимо поделить его на количество ядер процессора и узнать итоговый результат.

Если вы собрались искать данные в сети, то для начала узнайте точное имя ЦП. Нажмите правой кнопкой по иконке «Мой компьютер» и выберите пункт «Свойства». В графе «Система» будет пункт «Процессор», который нам, собственно, нужен. Переписываете его название в тот же Google или Yandex и смотрите значение на сайтах. Для достоверной информации лучше выбирать официальные порталы производителя (Intel или AMD).
Третий способ также не вызывает проблем, но требует установки дополнительного софта вроде GPU‑Z, AIDA64 и прочих утилит для изучения спецификаций камня. Вариант для любителей разгона и копошения в деталях.

Итоги

Теперь вы понимаете, что такое кэш-память, от чего зависит ее объем, и для каких целей используется сверхбыстрый массив данных. На данный момент наиболее интересными решениями на рынке в плане большого объема кэш-памяти, можно назвать устройства AMD Ryzen 5 и 7 с их 16 МБ L3.

В следующих статьях осветим такие темы как процессоров, пользу от чипов и не только. и оставайтесь с нами. До новых встреч, пока.

Кэш -промежуточный буфер с быстрым доступом, содержащий информацию, которая может быть запрошена с наибольшей вероятностью. Доступ к данным в кэше идёт быстрее, чем выборка исходных данных из оперативной (ОЗУ) и быстрее внешней (жёсткий диск или твердотельный накопитель) памяти, за счёт чего уменьшается среднее время доступа и увеличивается общая производительность компьютерной системы.

Ряд моделей центральных процессоров (ЦП) обладают собственным кэшем, для того чтобы минимизировать доступ к оперативной памяти (ОЗУ), которая медленнее, чем регистры. Кэш-память может давать значительный выигрыш в производительности, в случае когда тактовая частота ОЗУ значительно меньше тактовой частоты ЦП. Тактовая частота для кэш-памяти обычно ненамного меньше частоты ЦП.

Уровни кэша

Кэш центрального процессора разделён на несколько уровней. В универсальном процессоре в настоящее время число уровней может достигать 3. Кэш-память уровня N+1 как правило больше по размеру и медленнее по скорости доступа и передаче данных, чем кэш-память уровня N.

Самой быстрой памятью является кэш первого уровня -- L1-cache. По сути, она является неотъемлемой частью процессора, поскольку расположена на одном с ним кристалле и входит в состав функциональных блоков. В современных процессорах обычно кэш L1 разделен на два кэша, кэш команд (инструкций) и кэш данных (Гарвардская архитектура). Большинство процессоров без L1 кэша не могут функционировать. L1 кэш работает на частоте процессора, и, в общем случае, обращение к нему может производиться каждый такт. Зачастую является возможным выполнять несколько операций чтения/записи одновременно. Латентность доступа обычно равна 2?4 тактам ядра. Объём обычно невелик -- не более 384 Кбайт.

Вторым по быстродействию является L2-cache -- кэш второго уровня, обычно он расположен на кристалле, как и L1. В старых процессорах -- набор микросхем на системной плате. Объём L2 кэша от 128 Кбайт до 1?12 Мбайт. В современных многоядерных процессорах кэш второго уровня, находясь на том же кристалле, является памятью раздельного пользования -- при общем объёме кэша в nM Мбайт на каждое ядро приходится по nM/nC Мбайта, где nC количество ядер процессора. Обычно латентность L2 кэша, расположенного на кристалле ядра, составляет от 8 до 20 тактов ядра.

Кэш третьего уровня наименее быстродействующий, но он может быть очень внушительного размера -- более 24 Мбайт. L3 кэш медленнее предыдущих кэшей, но всё равно значительно быстрее, чем оперативная память. В многопроцессорных системах находится в общем пользовании и предназначен для синхронизации данных различных L2.

Иногда существует и 4 уровень кэша, обыкновенно он расположен в отдельной микросхеме. Применение кэша 4 уровня оправдано только для высоко производительных серверов и мейнфреймов.

Проблема синхронизации между различными кэшами (как одного, так и множества процессоров) решается когерентностью кэша. Существует три варианта обмена информацией между кэш-памятью различных уровней, или, как говорят, кэш-архитектуры: инклюзивная, эксклюзивная и неэксклюзивная.

Насколько важен кэш L3 для процессоров AMD?

Действительно, имеет смысл оснащать многоядерные процессоры выделенной памятью, которая будет использоваться совместно всеми доступными ядрами. В данной роли быстрый кэш третьего уровня (L3) может существенно ускорить доступ к данным, которые запрашиваются чаще всего. Тогда ядрам, если существует такая возможность, не придётся обращаться к медленной основной памяти (ОЗУ, RAM).

По крайней мере, в теории. Недавно AMD анонсировала процессор Athlon II X4, представляющий собой модель Phenom II X4 без кэша L3, намекая на то, что он не такой и необходимый. Мы решили напрямую сравнить два процессора (с кэшем L3 и без), чтобы проверить, как кэш влияет на производительность.

Как работает кэш?

Перед тем, как мы углубимся в тесты, важно понять некоторые основы. Принцип работы кэша довольно прост. Кэш буферизует данные как можно ближе к вычислительным ядрам процессора, чтобы снизить запросы CPU в более отдалённую и медленную память. У современных настольных платформ иерархия кэша включает целых три уровня, которые предваряют доступ к оперативной памяти. Причём кэши второго и, в частности, третьего уровней служат не только для буферизации данных. Их цель заключается в предотвращении перегрузки шины процессора, когда ядрам необходимо обменяться информацией.

Попадания и промахи

Эффективность архитектуры кэшей измеряется процентом попаданий. Запросы данных, которые могут быть удовлетворены кэшем, считаются попаданиями. Если данный кэш не содержит нужные данные, то запрос передаётся дальше по конвейеру памяти, и засчитывается промах. Конечно, промахи приводят к большему времени, которое требуется для получения информации. В результате в вычислительном конвейере появляются "пузырьки" (простои) и задержки. Попадания, напротив, позволяют поддержать максимальную производительность.

Запись в кэш, эксклюзивность, когерентность

Политики замещения диктуют, как в кэше освобождается место под новые записи. Поскольку данные, записываемые в кэш, рано или поздно должны появиться в основной памяти, системы могут делать это одновременно с записью в кэш (write-through) или могут маркировать данные области как "грязные" (write-back), а выполнять запись в память тогда, когда она будет вытесняться из кэша.

Данные в нескольких уровнях кэша могут храниться эксклюзивно, то есть без избыточности. Тогда вы не найдёте одинаковых строчек данных в двух разных иерархиях кэша. Либо кэши могут работать инклюзивно, то есть нижние уровни кэша гарантированно содержат данные, присутствующие в верхних уровнях кэша (ближе к процессорному ядру). У AMD Phenom используются эксклюзивный кэш L3, а Intel следует стратегии инклюзивного кэша. Протоколы когерентности следят за целостностью и актуальностью данных между разными ядрами, уровнями кэшей и даже процессорами.

Объём кэша

Больший по объёму кэш может содержать больше данных, но при этом наблюдается тенденция увеличения задержек. Кроме того, большой по объёму кэш потребляет немалое количество транзисторов процессора, поэтому важно находить баланс между "бюджетом" транзисторов, размером кристалла, энергопотреблением и производительностью/задержками.

Ассоциативность

Записи в оперативной памяти могут привязываться к кэшу напрямую (direct-mapped), то есть для копии данных из оперативной памяти существует только одна позиция в кэше, либо они могут быть ассоциативны в n-степени (n-way associative), то есть существует n возможных расположений в кэше, где могут храниться эти данные. Более высокая степень ассоциативности (вплоть до полностью ассоциативных кэшей) обеспечивает наилучшую гибкость кэширования, поскольку существующие данные в кэше не нужно переписывать. Другими словами, высокая n-степень ассоциативности гарантирует более высокий процент попаданий, но при этом увеличивается задержка, поскольку требуется больше времени на проверку всех этих ассоциаций для попадания. Как правило, наибольшая степень ассоциации разумна для последнего уровня кэширования, поскольку там доступна максимальная ёмкость, а поиск данных за пределами этого кэша приведёт к обращению процессора к медленной оперативной памяти.

Приведём несколько примеров: у Core i5 и i7 используется 32 кбайт кэша L1 с 8-way ассоциативностью для данных и 32 кбайт кэша L1 с 4-way для инструкций. Понятно желание Intel, чтобы инструкции были доступны быстрее, а у кэша L1 для данных был максимальный процент попаданий. Кэш L2 у процессоров Intel обладает 8-way ассоциативностью, а кэш L3 у Intel ещё "умнее", поскольку в нём реализована 16-way ассоциативность для максимизации попаданий.

Однако AMD следует другой стратегии с процессорами Phenom II X4, где используется кэш L1 с 2-way ассоциативностью для снижения задержек. Чтобы компенсировать возможные промахи ёмкость кэша была увеличена в два раза: 64 кбайт для данных и 64 кбайт для инструкций. Кэш L2 имеет 8-way ассоциативность, как и у дизайна Intel, но кэш L3 у AMD работает с 48-way ассоциативностью. Но решение выбора той или иной архитектуры кэша нельзя оценивать без рассмотрения всей архитектуры CPU. Вполне естественно, что практическое значение имеют результаты тестов, и нашей целью как раз была практическая проверка всей этой сложной многоуровневой структуры кэширования.

При выполнении различных задач в процессор вашего компьютера поступают необходимые блоки информации из оперативной памяти. Обработав их ЦП записывает полученные результаты вычислений в память и получает на обработку последующие блоки данных. Так продолжается до тех пор, пока поставленная задача не будет выполнена.

Вышеупомянутые процессы производятся на очень большой скорости. Однако скорость даже самой быстрой оперативной памяти значительно меньше скорости любого слабого процессора. Каждое действие, будь то запись на неё информации или считывание с неё занимают много времени. Скорость работы оперативной памяти в десятки раз ниже скорости процессора.

Не смотря на такую разницу в скорости обработки информации, процессор ПК не простаивает без дела и не ожидает, когда ОЗУ выдаст и примет данные. Процессор всегда работает и всё благодаря присутствию в нем кэш памяти.

Кэш — особый вид оперативной памяти. Процессор использует память кэша для хранения тех копий информации из основной оперативной памяти компьютера, вероятность обращения к которым в ближайшее время очень велика.

По сути кэш-память выполняет роль быстродействующего буфера памяти хранящего информацию, которая может потребоваться процессору. Таким образом процессор получает необходимые данные в десятки раз быстрее, чем при считывании их из оперативной памяти.

Основным отличием кэш памяти от обычного буфера являются встроенные логические функции. В буфере хранятся случайные данные, которые как правило обрабатываются по схеме » получен первым, выдан первым» либо » получен первым, выдан последним». В кэш памяти содержатся данные, вероятность обращения к которым в ближайшее время очень велика. Поэтому благодаря «умному кэшу» процессор может работать с полной скоростью и не ожидать данные, извлекаемые из более медленной оперативной памяти.

Основные типы и уровни кэш-памяти L1 L2 L3

Кэш память выполнена в виде микросхем статической оперативной памяти (SRAM), которые устанавливаются на системной плате либо встроены в процессор. В сравнении с другими видами памяти, статическая память способна работать на очень больших скоростях.

Скорость кэша зависит от объема конкретной микросхемы, Чем больше объем микросхемы, тем труднее добиться высокой скорости для её работы. Учитывая данную особенность, при изготовлении кэш память процессора выполняют в виде нескольких небольших блоков, именуемых уровнями. Самой распространенной на сегодняшний день считается трехуровневая система кеша L1,L2, L3:

Кэш память первого уровня L1 — самая маленькая по объему (всего несколько десятков килобайт), но самая быстрая по скорости и наиболее важная. Она содержит данные наиболее часто используемые процессором и работает без задержек. Обычно количество микросхем памяти уровня L1 равно количеству ядер процессора, при этом каждое ядро получает доступ только к своей микросхеме L1.

Кэш память уровня L2 по скорости уступает памяти L1, но выигрывает в объеме, который измеряется уже в нескольких сотнях килобайт. Она предназначена для временного хранения важной информации, вероятность обращения к которой ниже, чем у информации хранящейся в кэше L1.

Третий уровень кэш памяти L3 — имеет самый большой объем из трех уровней (может достигать десятков мегабайт), но и обладает самой медленной скоростью, которая всё же значительно выше скорости оперативной памяти. Кэш память L3 служит общей для всех ядер процессора. Уровень памяти L3 предназначен для временного хранения тех важных данных, вероятность обращения к которым чуть ниже, чем у информации которая хранится в первых двух уровнях L1, L2. Она также обеспечивает взаимодействие ядер процессора между собой.

Некоторые модели процессоров выполнены с двумя уровнями кэш памяти, в которых L2 совмещает все функции L2 и L3.

Когда полезен большой объем кэша.

Значительный эффект от большого объема кэша вы ощутите при использовании программ архиваторов, в 3D играх, во время обработки и кодирования видео. В относительно «легких» программах и приложениях разница практически не заметна (офисные программы, плееры и т.п).

Компьютерные процессоры сделали значительный рывок в развитии за последние несколько лет. Размер транзисторов с каждым годом уменьшается, а производительность растет. При этом закон Мура уже становится неактуальным. Что касается производительности процессоров, то следует учитывать, не только количество транзисторов и частоту, но и объем кэша.

Возможно, вы уже слышали о кэш памяти когда искали информацию о процессорах. Но, обычно, мы не обращаем много внимания на эти цифры, они даже не сильно выделяются в рекламе процессоров. Давайте разберемся на что влияет кэш процессора, какие виды кэша бывают и как все это работает.

Если говорить простыми словами, то кэш процессора это просто очень быстрая память. Как вы уже знаете, у компьютера есть несколько видов памяти. Это постоянная память, которая используется для хранения данных, операционной системы и программ, например, SSD или жесткий диск. Также в компьютере используется оперативная память. Это память со случайным доступом, которая работает намного быстрее, по сравнению с постоянной. И наконец у процессора есть ещё более быстрые блоки памяти, которые вместе называются кэшем.

Если представить память компьютера в виде иерархии по её скорости, кэш будет на вершине этой иерархии. К тому же он ближе всего к вычислительным ядрам, так как является частью процессора.

Кэш память процессора представляет из себя статическую память (SRAM) и предназначен для ускорения работы с ОЗУ. В отличие от динамической оперативной памяти (DRAM), здесь можно хранить данные без постоянного обновления.

Как работает кэш процессора?

Как вы, возможно, уже знаете, программа — это набор инструкций, которые выполняет процессор. Когда вы запускаете программу, компьютеру надо перенести эти инструкции из постоянной памяти в процессору. И здесь вступает в силу иерархия памяти. Сначала данные загружаются в оперативную память, а потом передаются в процессор.

В наши дни процессор может обрабатывать огромное количество инструкций в секунду. Чтобы по максимуму использовать свои возможности, процессору необходима супер быстрая память. Поэтому был разработан кэш.

Контроллер памяти процессора выполняет работу по получению данных из ОЗУ и отправке их в кэш. В зависимости от процессора, используемого в вашей системе, этот контроллер может быть размещен в северном мосту материнской плате или в самом процессоре. Также кэш хранит результаты выполнения инструкций в процессоре. Кроме того, в самом кэше процессора тоже есть своя иерархия.

Уровни кэша процессора — L1, L2 и L3

Веся кэш память процессора разделена на три уровни: L1, L2 и L3. Эта иерархия тоже основана на скорости работы кэша, а также на его объеме.

  • L1 Cache (кэш первого уровня) — это максимально быстрый тип кэша в процессоре. С точки зрения приоритета доступа, этот кэш содержит те данные, которые могут понадобиться программе для выполнения определенной инструкции;
  • L2 Cache (кэш второго уровня процессора) — медленнее, по сравнению L1, но больше по размеру. Его объем может быть от 256 килобайт до восьми мегабайт. Кэш L2 содержит данные, которые, возможно, понадобятся процессору в будущем. В большинстве современных процессоров кэш L1 и L2 присутствуют на самих ядрах процессора, причём каждое ядро получает свой собственный кэш;
  • L3 Cache (кэш третьего уровня) — это самый большой и самый медленный кэш. Его размер может быть в районе от 4 до 50 мегабайт. В современных CPU на кристалле выделяется отдельное место под кэш L3.

На данный момент это все уровни кэша процессора, компания Intel пыталась создать кэш уровня L4, однако, пока эта технология не прижилась.

Для чего нужен кэш в процессоре?

Пришло время ответить на главный вопрос этой статьи, на что влияет кэш процессора? Данные поступают из ОЗУ в кэш L3, затем в L2, а потом в L1. Когда процессору нужны данные для выполнения операции, он пытается их найти в кэше L1 и если находит, то такая ситуация называется попаданием в кэш. В противном случае поиск продолжается в кэше L2 и L3. Если и теперь данные найти не удалось, выполняется запрос к оперативной памяти.

Теперь мы знаем, что кэш разработан для ускорения передачи информации между оперативной памятью и процессором. Время, необходимое для того чтобы получить данные из памяти называется задержкой (Latency). Кэш L1 имеет самую низкую задержку, поэтому он самый быстрый, кэш L3 — самую высокую. Когда данных в кэше нет, мы сталкиваемся с еще более высокой задержкой, так как процессору надо обращаться к памяти.

Раньше, в конструкции процессоров кєши L2 и L3 были были вынесены за пределы процессора, что приводило к высоким задержкам. Однако уменьшение техпроцесса, по которому изготавливаются процессоры позволяет разместить миллиарды транизисторов в пространстве, намного меньшем, чем раньше. Как результат, освободилось место, чтобы разместить кэш как можно ближе к ядрам, что ещё больше уменьшает задержку.

Как кэш влияет на производительность?

Влияние кэша на произвоидтельность компьютера напрямую зависит от его эффективности и количества попаданий в кэш. Ситуации, когда данных в кэше не оказывается очень сильно снижают общую производительность.

Представьте, что процессор загружает данные из кэша L1 100 раз подряд. Если процент попаданий в кэш будет 100%, процессору понадобиться 100 наносекунд чтобы получить эти данные. Однако, как только процент попаданий уменьшится до 99%, процессору нужно будет извлечь данные из кэша L2, а там уже задержка 10 наносекунд. Получится 99 наносекунд на 99 запросов и 10 наносекунд на 1 запрос. Поэтому уменьшение процента попаданий в кэш на 1% снижает производительность процессора 10%.

В реальном времени процент попаданий в кэш находится между 95 и 97%. Но как вы понимаете, разница в производительности между этими показателями не в 2%, а в 14%. Имейте в виду, что в примере, мы предполагаем, что прощенные данные всегда есть в кэше уровня L2, в реальной жизни данные могут быть удалены из кэша, это означает, что их придется получать из оперативной памяти, у которой задержка 80-120 наносекунд. Здесь разница между 95 и 97 процентами ещё более значительная.

Низкая производительность кэша в процессорах AMD Bulldozer и Piledriver была одной из основных причин, почему они проигрывали процессорам Intel. В этих процессорах кэш L1 разделялся между несколькими ядрами, что делало его очень не эффективным. В современных процессорах Ryzen такой проблемы нет.

Можно сделать вывод, чем больше объем кэша, тем выше производительность, поскольку процессор сможет получить в большем количестве случаев нужные ему данные быстрее. Однако, стоит обращать внимание не только на объем кэша процессора, но и на его архитектуру.

Выводы

Теперь вы знаете за что отвечает кэш процессора и как он работает. Дизайн кэша постоянно развивается, а память становится быстрее и дешевле. Компании AMD и Intel уже провели множество экспериментов с кэшем, а в Intel даже пытались использовать кэш уровня L4. Рынок процессоров развивается куда быстрее, чем когда-либо. Архитектура кэша будет идти в ногу с постоянно растущей мощностью процессоров.

Кроме того, многое делается для устранения узких мест, которые есть у современных компьютеров. Уменьшение задержки работы с памятью одна из самых важных частей этой работы. Будущее выглядит очень многообещающе.

Похожие записи.