Пентиум 4 2.4 ггц. Новый виток эволюции

Сергей Пахомов

Только в прошлом номере КомпьютерПресс мы познакомили наших читателей с новым процессором Intel Pentium 4 2,4 ГГц, и вот новое событие, которое мы не могли обойти стороной, - компания Intel объявила о выпуске процессора Intel Pentium 4 2,4 B ГГц.

ля того чтобы дать возможность отличить по названию новый процессор с тактовой частотой 2,4 ГГц от его предшественника с той же тактовой частотой, к названию добавлена буква «B». Напомним, что приблизительно аналогичная ситуация имела место и при появлении процессора Intel Pentium 4 2 B ГГц с ядром Northwood. Чтобы его можно было отличить от процессора с той же тактовой частотой, но с ядром Willamette, в название включили букву «A».

Подобно предшественникам Pentium 4 2 A ГГц, Pentium 4 2,2 ГГц и Pentium 4 2,4 ГГц, новый процессор построен на ядре Northwood (0,13-микронная технология) и имеет кэш второго уровня размером 512 Кбайт. Внешне этот процессор ничем не отличается от предыдущих - все тот же корпус FC-PGA2 (Flip-Chip Pin Grid Array) и формфактор mPGA-478. А вот внутренних различий куда больше. Новый процессор рассчитан на частоту системной шины 533 МГц. Эта шина, называемая также Quad Pumped Bus, связывает процессор с северным мостом чипсета (контроллером памяти) и позволяет благодаря особой организации на физическом уровне передавать четыре пакета данных за один такт FSB-шины с частотой 133 МГц. Таким образом, эта 64-битная шина имеет пиковую пропускную способность 4,26 Гбайт/с, а не 3,2 Гбайт/с, как в предыдущих моделях.

Итак, основное отличие нового процессора - это изменение интерфейса согласования с системной шиной. Естественно, что для реализации поддержки системной шины с частотой 533 МГц потребовалась и новая модификация чипсета. В случае использования памяти RDRAM - это i850E. Как и все последние чипсеты от компании Intel, i850 построен на основе хаб-архитектуры и включает контроллер-концентратор памяти (Memory Controller Hub, MCH) и контроллер-концентратор ввода-вывода (I/O Controller Hub) ICH2.

«Общение» контроллера-концентратора памяти с процессором осуществляется по 533-мегагерцевой 64-битной шине, c пропускной способностью 4,26 Гбайт/с. А вот общение контроллера с двухканальной памятью RDRAM PC800 пока не претерпело изменений. Шина памяти, как и прежде, работает на частоте 400 МГц и имеет пропускную способность 3,2 Гбайт/с.

Конечно, при этом наблюдается некий дисбаланс между пропускной способностью памяти и процессора, но даже в этом случае, как будет показано ниже, системе обеспечивается довольно неплохой прирост производительности по сравнению с 400-мегагерцевой системной шиной при той же частоте процессора.

Кроме того, следует иметь в виду, что в скором времени на рынке появится новый тип двухканальной RDRAM-памяти PC1066, поддерживающей частоту шины 533 МГц и имеющей пропускную способность 4,26 Гбайт/с.

Скорее всего, сам чипсет i850E будет поддерживать и шину памяти с частотой 533 МГц (во всяком случае, никаких технических препятствий к этому нет, хотя сама компания Intel не объявляла о поддержке новой памяти). В этом случае появляется потенциальная возможность создавать сбалансированные высокопроизводительные решения. Однако на момент тестирования в нашем распоряжении отсутствовала память RDRAM, поддерживающая частоту 533 МГц, поэтому мы не имели возможности проверить поддержку частоты памяти в 533 МГц чипсетом i850E.

Для работы с графической подсистемой Memory Controller Hub поддерживает шину с интерфейсом AGP 4x, обеспечивающую пропускную способность чуть более 1 Гбайт/с.

Контроллер-концентратор ввода-вывода (ICH2) знаком нашим читателям еще со времен чипсета i815, поэтому мы ограничимся лишь кратким перечислением его функциональных возможностей: два USB-контроллера (четыре канала с пропускной способностью до 24 Мбит/с), двухканальный ATA/100-контроллер, шестиканальный звуковой контроллер AC’97, поддержка CNR/AMR-слота. Взаимодействие между контроллерами осуществляется по специальной шине, имеющей пропускную способность 266 Мбайт/с.

Для того чтобы на практике оценить все преимущества нового процессора в случае использования более высокочастотной системной шины, мы протестировали его, задействовав следующую конфигурацию тестового стенда:

Кроме того, использовалось следующее программное обеспечение:

  • операционная система Windows XP Professional (English);
  • видеодрайвер nVIDIA detonator v. 28.32 (разрешение 1024Ѕ768, глубина цвета 32 bit,Vsync - откл.);
  • Intel Application Accelerator v 2.2;
  • Intel® Chipset Software Installation Utility, v 3.20.1008.

Для тестирования мы отобрали следующие программы:

  • SYSmark 2002 Internet Contenet Creation;
  • SYSmark 2002 Office Productivity;
  • Ziff Davis Business Winstone 2001;
  • Ziff Davis Content Creation 2002;
  • RazorLame 1.1.5+Lame 3.92;
  • VirtualDub 1.4.10+DIVx 5.0.1 Pro;
  • WinAce v2.11;
  • WinZip 8.1;
  • CPU RightMark;
  • MadOnion 3DMark 2001SE;
  • MadOnion PCMark 2002;
  • SPECviewPerf;
  • SiSoft Sandra Pro v 2002.1.8.59.

Конечно, интерес представляют не столько абсолютные результаты тестирования (глядя на голые цифры, делать выводы довольно трудно), сколько результаты сравнения тестов для данного процессора с аналогичными результатами его предшественников. Именно поэтому мы попытались провести сравнительное тестирование сразу нескольких процессоров: Intel Pentium 4 2,4 B ГГц, Intel Pentium 4 2,4 ГГц, Intel Pentium 4 2,2 ГГц и Intel Pentium 4 2 ГГц. Особый интерес, на наш взгляд, представляют результаты сравнения процессоров Intel Pentium 4 2,4 B ГГц, Intel Pentium 4 2,4 ГГц, то есть с одной и той же частотой, но с разными частотами системной шины.

Учитывая возможность материнской платы Intel D850MV поддерживать частоту системной шины как 533, так и 400 МГц, мы использовали один и тот же стенд для тестирования всех четырех процессоров, что позволило более корректно сравнивать между собой тестируемые процессоры. Если бы, к примеру, для тестирования разных процессоров использовались различные материнские платы, то результаты тестирования, естественно, зависели бы не только от процессоров, но и от самих плат, то есть сравнение процессоров было бы не вполне корректным. Впрочем, достичь «идеальной» стендовой конфигурации нам также не удалось. Дело в том, что использовавшаяся нами плата при работе с процессором Intel Pentium 4 2,4 B ГГц имела частоту FSB 132,6 МГц, то есть чуть ниже, чем требуется. При коэффициенте умножения, равном 18, это приводило к частоте процессора 2386,6 Гц, то есть до обещанных 2,4 ГГц не хватало 13,4 МГц. При работе с процессором Intel Pentium 4 2,4 ГГц частота FSB составляла 99,7 МГц, соответственно при коэффициенте умножения 24 внутренняя частота процессора составляла уже 2392,7 МГц, то есть несколько выше, чем в предыдущем случае. Таким образом, процессор Intel Pentium 4 2,4 ГГц оказывался в несколько более выгодных условиях, чем процессор Intel Pentium 4 2,4 B.

Результаты тестирования всех четырех процессоров представлены в таблице .

Рассмотрим результаты тестирования более подробно. Начнем с традиционных тестов SYSmark 2002 Internet Contenet Creation и SYSmark 2002 Office Productivity. Прежде всего отметим, что эти тесты, эмулирующие работу пользователя с реальными приложениями, не являются «процессорными», а в большей степени позволяют определить производительность системы в целом. Однако если учесть, что изменялся не сам стенд, а только процессор, то данные результаты, точнее их изменение, можно напрямую связать с влиянием процессора на производительность системы.

При переходе от процессора Intel Pentium 4 2,4 ГГц к процессору Intel Pentium 4 2,4 B ГГц прирост производительности в тесте SYSmark 2002 Internet Contenet Creation составляет 5,8%, а в тесте SYSmark 2002 Office Productivity - 2,8%. При этом рост производительности при переходе от процессора Intel Pentium 4 2,2 ГГц к процессору Intel Pentium 4 2,4 ГГц составляет в тесте SYSmark 2002 Internet Contenet Creation всего 3,7%, а в тесте SYSmark 2002 Office Productivity - 4,1 %.

Другими традиционно используемыми тестами на определение общей производительности системы являются тесты Ziff Davis Business Winstone 2001 и Ziff Davis Content Creation 2002. К сожалению, высокая погрешность результатов не позволяет достаточно корректно оценить прирост производительности не только при переходе от 400-мегагерцевой шины на 533-мегагерцевую, но и при повышении тактовой частоты от 2,2 до 2,4 ГГц.

Кроме традиционных тестов на измерение общей производительности системы, для сравнения прироста производительности мы использовали отдельные программы, позволяющие оценить эффективность работы с аудио- и видеоданными.

Для оценки скорости конвертации wav-файла в mp3-формат использовался wav-файл с исходным размером 48,8 Мбайт и новый кодировщик Lame 3.92 с программной оболочкой RazorLame. Выяснилось, что переход от 400-мегагерцевой шины на 500-мегагерцевую обеспечивает выигрыш в скорости конвертации на 2,1%, в то время как увеличение тактовой частоты процессора с 2,2 до 2,4 ГГц приводит к росту производительности в 9,8%.

При конвертации avi-файла в формат MPEG-4 использовались видеофайл с исходным размером 1,31 Гбайт и новый кодировщик DIVx 5.0.1 Pro с программной оболочкой VirtualDub 1.4.10. Прирост по скорости конвертации для нового процессора по сравнению с Intel Pentium 4 2,4 ГГц составил 4,8%, а прирост при переходе с частоты 2,2 ГГц на частоту 2,4 ГГц при неизменной частоте системной шины - 6,1%.

Другим набором тестов, позволяющих оценить прирост производительности системы, являются популярные архиваторы. Мы использовали архиваторы WinAce v2.11 и WinZip 8.1. В качестве архивируемой директории была взята директория с общим размером 2,1 Гбайт, насчитывающая 12 109 различных по формату файлов. Оба архиватора были настроены на максимальную степень сжатия с размерами словарей по умолчанию (1024 K). Прирост в скорости архивирования для процессора Intel Pentium 4 2,4 B ГГц составил 4,75% по сравнению с процессором Intel Pentium 4 2,4 ГГц при использовании архиватора WinAce v2.11 и 1,3% - при использовании архиватора WinZip 8.1. При увеличении тактовой частоты от 2,2 до 2,4 ГГц с частотой системной шины 400 МГц прирост производительности составляет 2,9% для архиватора WinAce v2.11 и 9,2% для архиватора WinZip 8.1.

Прекрасная масштабируемость нового процессора проявилась и в тесте MadOnion 3DMark 2001SE. Прирост производительности при переходе на 533-мегагерцевую шину (при неизменной частоте процессора) составил 1,36%, что приблизительно соответствует приросту производительности при увеличении частоты процессора с 2,2 до 2,4 ГГц (при неизменной частоте системной шины), который составил 1,43%.

Графический тест SPECviewPerf не выявил однозначного преимущества нового процессора. Впрочем, результаты этого теста слабо зависят не только от частоты системной шины, но и от частоты процессора. Практически разброс результатов для всех типов процессоров определяется погрешностью измерений, поэтому можно говорить, что сам по себе процессор уже не является в данном тесте слабым местом. Результаты же теста в значительно большей степени зависят от типа используемой видеокарты.

Следующий тест, использовавшийся нами для тестирования процессоров, - это новый пакет MadOnion PCMark 2002. Данный тест хотя и не является полностью синтетическим, позволяет сконцентрироваться на тестировании именно процессора и оперативной памяти. При тестировании процессора выполняются такие типичные операции, как декодирование в Jpeg-формат, компрессия и декомпрессия файлов, поиск по тексту, конвертация аудиофайлов, а также расчет 3D-векторов. Как и следовало ожидать, в процессорных тестах никакого преимущества нового процессора выявлено не было, что и неудивительно. Эти результаты определяются тактовой частотой процессора (при той же архитектуре процессора) и не должны зависеть от частоты системной шины, связывающей процессор с контроллером CMH. Набор тестов на производительность памяти (всего таких тестов 25) в этом смысле более показателен. При чтении блоков памяти размером 6, 48 и 384 Кбайт роста производительности не наблюдается, поскольку в этом случае процессор общается с кэшем данных, а не с памятью. Однако при чтении больших по размеру блоков (1536 и 3072 K) наблюдается прирост производительности при переходе на 533-мегагерцевую шину. Аналогичный прирост производительности наблюдается и при произвольном доступе к памяти.

И наконец, последний тест, о котором хотелось бы рассказать, - новый тестовый пакет CPU RightMark. Особенно отрадно, что на этот раз речь идет не о тесте иностранного производства, а о качественном тестовом пакете, разработанном нашими соотечественниками.

Тест CPU RightMark предназначен для измерения производительности процессоров в таких вычислительных задачах, как решение системы дифференциальных уравнений, соответствующих моделируемым физическим процессам взаимодействия системы многих тел, и решение задач из области трехмерной графики.

Отличительной особенностью теста CPU RightMark является то, что результаты напрямую зависят от самого процессора, памяти и шины «память-процессор», тогда как влияние остальных компонентов системы сведено к минимуму. Это достигается за счет учета только времени работы процессора, а время работы выполнения «внешних» задач, таких как обращение к жесткому диску, переключение видеостраниц и др., не учитывается.

CPU RightMark содержит два программных блока, один из которых предназначен для расчета физической модели (то есть для решения системы дифференциальных уравнений), а другой отвечает за визуализацию (рендеринг) полученного решения, то есть за прорисовку сцены. У каждого блока есть разные варианты, оптимизированные под различные системы процессорных команд. Расчет физической модели возможен при помощи как набора команд SSE2 (процессор Intel Pentium 4), так и набора команд для FPU, поскольку при расчете используются числа типа double. Скорость работы этого блока отражает производительность процессора в связке с памятью при выполнении математических расчетов с использованием действительных чисел двойной точности.

Блок визуализации состоит из двух частей: блока предварительной обработки и блока отрисовки (рендеринга). Первый блок откомпилирован с использованием набора команд сопроцессора x87, а второй имеет несколько вариантов, оптимизированных под различные наборы инструкций: FPU+GeneralMMX, FPU+EnhancedMMX и SSE+EnhancedMMX. Скорость работы блока визуализации отражает производительность процессора и памяти при выполнении геометрических расчетов с использованием действительных чисел одинарной точности.

Отметим, что в тестовом приложении преимущественно выполняется эффективное предварительное кэширование данных, поэтому производительность памяти не оказывает существенного влияния на результаты. Это позволяет сконцентрироваться на определении непосредственно производительности процессоров без учета пропускной способности самой памяти.

Собственно, наше тестирование еще раз подтвердило, что результаты теста прежде всего определяются производительностью процессора и мало зависят от памяти. Выигрыш при переходе на 533-мегагерцевую шину, как и следовало ожидать, практически отсутствует. А вот при прорисовке сцены, что также понятно, наблюдается прирост производительности в 6,7%.

Итак, даже с учетом того, что при тестировании нового процессора мы использовали несколько несбалансированную систему - в том смысле, что пропускная способность памяти RDRAM PC800 была ниже пропускной способности самого процессора (процессор работал на частоте системной шины 533 МГц, а память имела частоту 400 МГц), - налицо явный прирост производительности. По сравнению с процессором Intel Pentium 4 2,4 МГц, имеющим такую же тактовую частоту, но поддерживающим системную шину 400 МГц, средний прирост производительности составляет порядка 4-5%; прирост производительности при решении задач конвертирования аудио- или видеофайлов - в среднем 3-4%.

Также наблюдается прирост производительности и в других приложениях, таких как архивирование данных, работа с 3D-графикой и пр. Путем простой экстраполяции нетрудно предположить, что при использовании нового типа RDRAM-памяти PC1066, поддерживающей частоту 533 МГц, прирост производительности системы в целом будет еще более значительным, особенно в приложениях, использующих эффективный обмен процессора с памятью. В следующем номере мы планируем ознакомить наших читателей с результатами тестирования этого процессора уже с новой RDRAM-памятью - PC1066.

КомпьютерПресс 6"2002

Вступление

Не секрет, что фирменная архитектура Intel NetBurst, используемая в процессорах Pentium 4 и предусматривающая прохождение данных по супер-длинному конвейеру, способна по-настоящему раскрыть свой потенциал лишь в том случае, если чип функционирует на высоких частотах. Начав выпуск Pentium 4, Intel за год успел добраться до частотного барьера на отметке 2 ГГц, который, определялся используемым техпроцессом - 0.18 мкм. К радости поклонников продукции Intel, новый более тонкий 0.13 мкм техпроцесс подоспел очень вовремя, позволив компании практически без задержек продолжать наращивание частоты процессоров семейства Pentium 4. И вот сегодня в нашей тестовой лаборатории проходит испытание Pentium 4 2.4 ГГц, который Intel именует гордо именует "самым быстродействующим в мире процессором для настольных систем". Так это или нет, мы вскоре узнаем.

Но для начала нужно сказать пару слов о самом процессоре. Pentium 4 2.4 ГГц основан на 0.13 мкм ядре Northwood, которое содержит 512 Кб кэш-памяти второго уровня. Собственно, в этом-то и состоит единственное формальное отличие 0.13 мкм ядра Northwood от предыдущего 0.18 мкм ядра Willamette. В свое время в статье, посвященной появлению первого представителя линейки Northwood с частотой 2.2 ГГц, мы попытались максимально подробно проанализировать технические параметры и рыночные перспективы нового процессора. Повторяться нет никакого смысла.

Поэтому, отложив в сторону рассуждения на отвлеченные темы, перейдем непосредственно к тестированию, а потом обсудим результаты.

Тестовая конфигурация

Для сравнения уровня производительности процессора Intel Pentium 4 "Northwood" 2.4 ГГц, все тесты были проведены также на процессоре Pentium 4 "Northwood" 2.2 ГГц и AMD Athlon XP 1900+, реальная частота которого составляет 1.6 ГГц. К сожалению, несмотря на то, что на момент проведения тестов AMD официально представила процессоры Athlon XP 2000+ и 2100+, нам их раздобыть не удалось. Именно поэтому оппонентом Pentium 4 выступил Athlon XP 1900+,а не, как логично было бы предположить, XP 2000+ или 2100+. Впрочем, 100 МГц на фоне 2 ГГц вряд ли способны кардинально изменить картину, так что использование AMD Athlon XP 1900+ считаем вполне допустимым.

Тестовая платформы имела следующую конфигурацию:

  • Материнские платы EPOX 4BDA (i845D) и EPOX 8KHA+ (VIA KT266A)
  • 256 Мб оперативной памяти DDR Kingston с латентностью CAS2
  • Графическая карта Leadtek GeForce2 Ti
  • Жесткий диск Maxtor 20 Гб (ATA/100, 5400 RPM)
  • Операционная система Windows Me
  • Драйверы nVidia Detonator 23.11

Тесты, которые были использованы для проведения испытаний, можно условно разделить на несколько групп:

  1. Синтетические тесты из пакетов SiSoft Sandra 2002 и PCMark 2002, демонстрирующие теоретический уровень производительности процессора и чипсета.
  2. Офисные приложения: ZD Business Winstone 2001, архиваторы WinZIP, WinRAR, медиа-компрессор Lame
  3. Игровые приложения: Quake III, Max Payne, 3DMark 2001
  4. Приложения для 3D-рендеринга: 3DStudio MAX 4, Bryce 5
  5. Программы, выполняющие сложные научные рассчеты: ScienceMark test, Super PI. Первый выполняет расчет орбиталей электронов в некоторых газах. Второй же способен посчитать число PI с точностью до 32 миллионов знаков после запятой.

Материнские платы

Материнские платы, на которых проводилось тестирование - EPOX 4BDA и EPOX 8KHA+ - заслуживают лестных отзывов. Обе платы обладают предоставляют широчайший набор настроек параметров северного и южного мостов, памяти, позволяя использовать нестандартные возможности чипсетов i845D и KT266A. Большое внимание разработчики уделили и оверклокерской функциональности, которая реализована в EPOX 4BDA и EPOX 8KHA+ в полной мере. Пытливые пользователи могут изменять частоту системной шины с шагом 1 МГц, варьировать напряжение питания процессора, памяти, AGP. EPOX 8KHA+ позволяет также изменять коэффициент умножения процессора, если, конечно, он разблокирован на самом процессоре.

Дизайн плат выполнен на высоком уровне, элементы распложены компактно и удобно. Единственное нарекание может вызывать, разве что, положение разъемов питания, которые помещены не совсем удобно. Впрочем, на этот недостаток можно смело закрыть глаза.

EPOX 8KHA+ оборудована фирменным встроенным индикатором POST-кодов, который призван облегчить жизнь инженерам и оверклокерам. На EPOX 4BDA такой индикатор отсутствует.

EPOX 4BDA имеет место для установки интегрированного IDE RAID контроллера HPT-372, обеспечивающего работу дисков в режиме ATA/133. Этот контроллер установлен на модификации EPOX 4BDA2+.

Обе платы поставляются в коробке, причем EPOX 8KHA+ - в подарочном варианте с красивой ручкой. В комплекте с EPOX 8KHA+ идет дополнительная USB-панель на 2 устройства.

Результаты

Синтетические тесты SiSoft Sandra 2002 наглядно демонстрируют отличия во внутренней архитектуре как процессоров, так и чипсетов. Взгляните: производительность целочисленных модулей находится примерно на одном уровне, однако при этом в операциях с плавающей точкой Athlon, обладающий тремя независимыми модулями FPU, не оставляет Pentium 4 ни единого шанса. Зато при использовании мультимедийных инструкций SSE ситуация вновь выравнивается.

В новом тесте PCMark 2002, выпущенном совсем недавно MadOnion (для справки - автор 3DMark), небольшим преимуществом на всех операциях обладает Pentium 4. Впрочем, не следует забывать, что при этом разница в частоте Pentium 4 и Athlon XP составляет 800 МГц!

Офисные приложения не дают возможности выявить лидера. В пакете ZD, эмулирующем работу с Microsoft Word, Excel, почтовым клиентом и т.п. с небольшим отрывом от Athlon XP 1900+ лидирует Pentium 4 2.4 ГГц.

В то же время, в архиваторах на первое место выходит Athlon XP. Его преимущество особенно бросается в глаза в WinRAR. Что же касается медиа-компрессии, то здесь в полной красе проявляют себе инструкции SSE2, благодаря использованию которых Pentium 4 получает неплохой бонус.



Рендеринг трехмерных сцен традиционно является сильной стороной Athlon XP. И полученные результаты лишний раз подтверждают это. Если в 3DStudio MAX 4 процессор Pentium 4 2.4 ГГц еще и способен составить конкуренцию Athlon XP 1900+ (1.6 ГГц), то в Bryce 5 шансов у Pentium 4 нет.

А вот в играх безоговорочным лидером является Pentium 4. Разработчики игр, судя по всему, с пониманием отнеслись к рекомендациям Intel и оптимизировали код под инструкции SSE2. Аналогичным образом поступили и авторы драйверов nVidia Detonator. Результат не замедлил сказаться: и в Quake III, и в Max Payne, и в 3DMark 2001 процессор Pentium 4 демонстрирует просто отличные результаты.





Наконец, научные тесты. Здесь, судя по всему, повторяется история с рендерингом и архивированием: Pentium 4 не может предъявить контраргументы FPU-модулям Athlon.



На момент начала продаж процессорные решения серии Intel Pentium 4 позволяли создавать наиболее производительные настольные вычислительные системы. Спустя 8 лет это семейство чипов устарело и было снято с производства. Именно об этом легендарном модельном ряде ЦПУ и пойдет в этом материале речь.

Позиционирование процессора

На самом старте продаж данные процессоры принадлежали к наиболее быстродействующим решениям. На подобную их принадлежность указывали передовая на тот момент архитектура полупроводникового кристалла NetBurst, существенно возросшие тактовые частоты и прочие значительно улучшенные технические характеристики. Как результат, владельцы персональных компьютеров на их базе могли решать любые по уровню сложности задачи. Единственная сфера, в которой эти чипы не применялись - это серверы. В таких высокопроизводительных вычислительных машинах использовались процессорные решения серии XEON. Также не совсем оправданно применение в составе офисных ПК Intel Pentium 4. Ядра такого чипа в этом случае не до конца нагружались и с экономической точки зрения такой подход был целиком и полностью не оправдан. Для ниши “Интел” выпускала менее производительные и более доступные ЦПУ серии Celeron.

Комплектация

В двух типичных вариантах поставки можно было встретить процессор Intel Pentium 4. Один из них был нацелен на небольшие компании, которые специализировались на сборке системных блоков. Также такой вариант поставки подходил для домашних сборщиков персональных компьютеров. В прайс-листах он обозначался ВОХ, а в него производитель включал следующее:

    Чип в защитной упаковке из прозрачного пластика.

    Фирменную систему теплоотвода, которая состояла из специальной термопасты и кулера.

    Краткое руководство по назначению и использованию процессорного решения.

    Наклейка с логотипом модели чипа для передней панели системного блока.

Второй вариант поставки в каталогах компьютерных комплектующих обозначался TRAIL. В этом случае из списка поставки исключалась система охлаждения и ее необходимо было дополнительно приобретать. Подобный вид комплектации наиболее оптимально подходил для крупных сборщиков персональных компьютеров. За счет большого объема продаваемой продукции они могли позволить покупать системы охлаждения по более низким оптовым ценам и такой подход был оправдан с экономической точки зрения. Также такой вариант поставки пользовался повышенным спросом среди компьютерных энтузиастов, которые приобретали улучшенные модификации кулеров и это позволяло еще лучше разогнать такой процессор.

Процессорные разъемы

Процессор Intel Pentium 4 мог устанавливаться в один из 3-х видов процессорных разъемов:

Первый разъем появился в 2000 году и был актуальным до конца 2001 года. Затем ему на смену пришел PGA478, который вплоть до 2004 года занимал ведущие позиции в перечне продукции компании “Интел”. Последний сокет LGA775 появился на прилавках магазинов в 2004 году. В 2008 году его сменил LGA1156, который был нацелен на применение чипов с более передовой архитектурой.

Сокет 423. Семейства поддерживаемых чипов

Производители процессоров в лице компаний “Интел” и АМД в конце 1999 года - начале 2000 года постоянно расширяли перечень предлагаемых чипов. Только у второй компании была вычислительная платформа с запасом, которая базировалась на сокете PGA462. А вот “Интел” все возможное на тот момент из процессорного разъема PGA370 “выжала” и ее нужно было предлагать рынку компьютерных технологий что-то новое. Этим новым и стал рассматриваемый чип с обновленным процессорным разъемом в 2000 году. Intel Pentium 4 дебютировал одновременно с анонсом платформы PGA423. Стартовая частота процессоров в этом случае была установлена на отметке 1,3 ГГц, а наибольшее ее значение достигало 2,0 ГГц. Все ЦПУ в этом случае принадлежали к семейству Willamette, изготавливались по технологии 190 нм. Частота системной шины была равна реальным 100 МГц, а ее эффективное значение составляло 400 МГц.

Процессорный разъем PGA478. Модели ЦПУ

Через год в 2001 году вышли обновленные процессоры Intel Pentium 4. Socket 478 - это разъем для их установки. Как было уже отмечено ранее, этот сокет был актуальным вплоть до 2004 года. Первым семейством процессоров, которые в него могли быть установлены, стал Willamette. Наивысшее значение частоты для них было установлено на 2,0 ГГц, а начальное - 1,3 ГГц. Техпроцесс у них соответствовал 190 нм. Затем появилось в продаже семейство ЦПУ Northwood. Эффективное значение частоты в некоторых моделях в этом случае было увеличено с 400 МГц до 533 МГц. Частота чипов могла находиться в пределах от 2,6 ГГц до 3,4 ГГц. Ключевое же нововведение чипов этого модельного ряда - это появление поддержки технологии виртуальной многозадачности HyperTraiding. Именно с ее помощью на одном физическом ядре обрабатывалось сразу два потока программного кода. По результатам тестов получался 15-процентный прирост быстродействия. Следующее поколение чипов “Пентиум 4” получило кодовое название Prescott. Ключевые от предшественников в этом случае заключались в улучшенном технологическом процессе, увеличении кеш-памяти второго уровня и повышение тактовой частоты до 800 МГц. При этом сохранилась поддержка HyperTraiding и не увеличилось максимальное значение тактовой частоты - 3,4 ГГц. Напоследок необходимо отметить то, что платформа PGA478 была последней вычислительной платформой, которая не поддерживала 64-битные решения и могла выполнять лишь только 32-разрядный программный код. Причем это касается и системных плат, и процессорных решений Intel Pentium 4. Характеристики компьютеров на базе таких комплектующих являются целиком и полностью устаревшими.

Завершающий этап платформы Pentium 4. Сокет для установки чипов LGA775

В 2006 году производители процессоров начали активно переходить на 64-разрядные вычисления. Именно по этой причине Intel Pentium 4 перешел на новую платформу на основе разъема LGA775. Первым поколением процессорных устройств для нее называлось точно также, как и для PGA478 - Prescott. Технические спецификации у них были идентичны предыдущим моделям чипов. Ключевое отличие - это повышение максимальной тактовой частоты, которая в этом случае могла уже достигать 3,8 ГГц. Завершающим же поколением ЦПУ стало Cedar Mill. В этом случае максимальная частота понизилась до 3,6 ГГц, но при этом техпроцесс улучшился и энергоэффективность улучшилась. В отличие от предшествующих платформ, в рамках LGA775 “Пентиум 4” плавно перешел из сегмента решений среднего и премиального уровня в нишу процессорных устройств бюджетного класса. На его место пришли чипы серии Pentium 2, которые уже могли похвастаться двумя физическими ядрами.

Тесты. Сравнение с конкурентами

В некоторых случаях достаточно неплохие результаты может показать Intel Pentium 4. Processor этот отлично подходит для выполнения программного кода, который оптимизирован под один поток. В этом случае результаты будут сопоставимы даже с нынешними ЦПУ среднего уровня. Конечно, сейчас таких программ не так уж и много, но они все еще встречаются. Также этот процессор способен составить конкуренцию нынешним флагманам в офисных приложениях. В остальных случаях этот чип не может показать приемлемый уровень производительности. Результаты тестов будут приведены для одного из последних представителей данного семейства “Пентиум 4 631”. Конкурентами для него будут процессоры Pentium D 805, Celeron Е1400, Е3200 и G460 от “Интел”. Продукция же АМД будет представлена Е-350. Количество ОЗУ стандарта DDR3 равно 8 Гб. Также данная вычислительная система доукомплектована адаптером GeForce GTX 570 с 1 Гб видеопамяти. В трехмерных пакетах Maya, Creo Elements и Solid Works в актуальных версиях 2011 года рассматриваемая модель “Пентиум 4” показывает достаточно неплохие результаты. По результатам тестов в этих 3-х программных пакетах была выведена средняя оценка по сто балльной шкале и силы распределились следующим образом:

“Пентиум 4 631” проигрывает процессорам с более продвинутой архитектурой и более высокими тактовыми частотами G460 и Е3200, у которых 2 физических ядра. Но при этом обходит полноценную двухъядерную модель D 805 на аналогичной архитектуре. Результаты же Е-350 и Е1400 были предсказуемые. Первый чип ориентирован на сборку ПК, в которых на первый план выходит энергопотребление, а удел второго - это офисные системы. Совершенно по-другому распределяются силы при кодировании медиафайлов в программах Lame, Apple Lossless, Nero AAC и Ogg Vorbis. В этом случае на первый план уже выходит количество ядер. Чем их больше, тем лучше выполняется задача. Опять-таки, по усредненной сто балльной шкале силы распределились следующим образом:

Даже Е-350 с приоритетом на энергоэффективность обходит “Пентиум 4” модели 631. Продвинутая архитектура полупроводникового кристалла и наличие 2-х ядер все-таки дают о себе знать. Изменяется картина при тестировании процессоров в архиваторах WinRAR и 7-Zip. Результаты чипов по той же самой шкале распределились так:

В этом тесте множество факторов оказывает влияние на конечный результат. Это и архитектура, это и размер кеша, это и тактовая частота, это и количеств ядер. Как результат, типичным середнячком получился тестируемый “Пентиум 4” в исполнении 631. Эталонная же система, производительность которой соответствовала 100 баллам, базировалась на ЦПУ Athlon II Х4 модели 620 от АМД.

Разгон

Внушительным увеличением уровня производительности мог похвастаться Intel Pentium 4. Разгон этих процессорных устройств позволял достичь значений тактовой частоты в 3,9-4,0 ГГц при улучшенной воздушной системе охлаждения. Если же заменить воздушное охлаждение на жидкостное на базе азота, то вполне можно рассчитывать на покорение значения в 4,1-4,2 ГГц. Перед разгоном компьютерная система должна быть укомплектована следующим образом:

    Мощность блока питания должна быть минимум 600 Вт.

    В компьютере должна быть установлена продвинутая модель системной платы, на которой можно осуществлять плавное регулирование различных параметров.

    Кроме основного кулера, на процессоре в системном блоке должны находиться дополнительные 2-3 вентилятора для осуществления улучшенного теплоотвода.

Мультипликатор частоты в этих чипах был заблокирован. Поэтому простым поднятием его значения разогнать ПК невозможно. Поэтому единственный способ увеличения производительности - это увеличение реального значения тактовой частоты системной шины. Порядок же разгона в этом случае следующий:

    Уменьшаются значения частот всех компонентов ПК. В этот список лишь только не попадает лишь только системной шины.

    На следующем этапе увеличиваем рабочее значение частоты последней.

    После каждого такого шага необходимо проверить стабильность работы компьютера с помощью прикладного специализированного софта.

    Когда простого повышения частоты уже недостаточно начинаем повышать напряжение на ЦПУ. Его максимальное значение равно 1,35-1,38 В.

    После достижения наибольшего значения напряжения частоту чипа повышать нельзя. Это и есть режим максимального быстродействия компьютерной системы.

В качестве примера можно привести модель 630 процессора “Пентиум 4”. Ее стартовая частота равна 3 ГГц. Номинальная же тактовая частота системной шины составляет в этом случае 200 МГц. Значение последней можно на воздушном охлаждении повысить вплоть до 280-290 МГц. В результате ЦПУ будет работать уже на 4,0 ГГц. То есть прирост производительности составляет 25 процентов.

Актуальность на сегодняшний день

На сегодняшний день целиком и полностью устарели все процессоры Intel Pentium 4. Температура их функционирования, энергопотребление, технологический процесс, тактовые частоты, размер кеш-памяти и ее организация, количество адресуемой ОЗУ - это далеко не полный перечень тех характеристик, которые указывают на то, что это полупроводниковое решение устарело. Возможностей такого чипа лишь достаточно для решения наиболее простых задач. Поэтому владельцам таких компьютерных систем необходимо их обновлять в срочном порядке.

Стоимость

Несмотря на то что в 2008 году выпуск рассматриваемых ЦПУ был прекращен, их все еще можно купить в новом состоянии со складских запасов. При этом необходимо отметить то, что в исполнении LGA775 и с поддержкой технологии НТ можно приобрести чипы Intel Pentium 4. Цена на них находится в пределах 1300-1500 рублей. Для офисных систем это вполне адекватный уровень стоимости. Процессорные решения, которые находились в использовании, можно найти на различных торговых площадках в интернете. Цена в этом случае начинается с отметки в 150-200 рублей. Полностью же собранный персональный компьютер бывший в употреблении можно купить по цене от 1500 рублей.

Вообще-то я не планировал форсировать написание этой заметки, вместо сна усесться за рабочий стол меня заставила вчерашняя новость "Prescott 2.4A покоряет частоту 4.6 ГГц ". Чаще всего в памяти остаётся достигнутая частота, а условия её получения (сухой лёд, жидкий азот, каскадная фреонка) забываются. Чтобы у вас не возникло ложного впечатления об исключительных оверклокерских способностях процессоров Intel Pentium 4 2.4A, давайте попробуем разогнать несколько экземпляров.

Ещё когда в нашей колонке новостей появились первые упоминания о возможности появления таких процессоров, я мысленно взял их на заметку. Если предположить, что они способны разгоняться до частоты 3.6 ГГц, то несложные подсчёты показывают, что такая частота будет достигнута при штатной для современных чипсетов FSB 200 МГц. Значит ничто не помешает большему разгону, если вдруг проявятся преимущества нового техпроцесса.

Напомню богатую историю процессоров Intel Pentium 4 2.4 ГГц. До сих пор все они основывались на ядре Notrhwood. Сначала появился обыкновенный Intel Pentium 4 2.4 ГГц, который работал на шине 100 (400) МГц с множителем х24. Такой же процессор, но предназначенный для работы при FSB 133 (533) МГц, получил индекс "B ". Разумеется, вы не забыли наш любимый Intel Pentium 4 2.4C, работающий на шине 200 (800) МГц. Индекс "A " говорит о том, что процессоры предназначены для работы на частоте шины 133 (533) МГц, но, в отличие от "обычных" Intel Pentium 4 2.4 ГГц, сделаны на ядре Prescott. Очень удачно, что именно вчера мне привезли три процессора Intel Pentium 4 2.4A.

Все процессоры собраны на Филиппинах, их маркировка SL7E8, а рабочее напряжение материнская плата показывала 1.36 В. Да, я не упомянул, что тесты проводились на нашей штатной системе:

реклама

  • Материнская плата – Asus P4P800, rev 1.02, BIOS 1015
  • Процессор – Intel Pentium 4 2.4A
  • Видеокарта – ATI Radeon 9700Pro
  • Память – 2x256 МБ Kingston PC3500 HyperX
  • Жёсткий диск – IBM DTLA 305020
  • Кулер – Zalman CNPS-7000A-Cu
  • Термопаста – КПТ-8
  • Операционная система – MS Windows XP SP1

Попытка сходу установить FSB 200 МГц не удалась, я стал постепенно проверять работоспособность первого процессора, поднимаясь с частоты шины 150 МГц, и выяснил, что максимум – это 180 МГц FSB. На этой частоте процессор без повышения напряжения загружал Windows, однако работал крайне неустойчиво. Никаким увеличением напряжения мне не удалось заставить его работать на этой, и уж тем более большей частоте, зато при FSB 175 МГц он работал стабильно даже с номинальным напряжением.

Второй процессор = первый + 5 МГц. Он загружал Windows при FSB 185 МГц, но стабильно заработал только при 180 МГц. Нужно сказать, что повышение напряжения не помогло ни одному из трёх разогнаться посильнее. Третий процессор оказался самым "мощным" и стабильно работал на частоте шины 185 МГц при номинальном напряжении.

3.3 ГГц – это не так уж мало, но и не так уж много. Процессоры на ядре Northwood тоже способны к работе на такой частоте и от Prescott хотелось бы получить большего.

реклама

Всёх волнует вопрос о температуре, но я ничего экстремального не увидел – в номинале BIOS показывал 40 градусов, а при разгоне 50. Правда, тут следует учитывать, что тестирование проводилось на открытом стенде, а Zalman CNPS-7000A-Cu не чета обычному кулеру из боксовой поставки.

Стоимость процессоров Intel Pentium 4 2.4A сравнима со стоимостью Intel Pentium 4 2.4B, работающих на той же частоте шины, и находится в районе $150. Процессоры Intel Pentium 4 2.4C стоят несколько дороже.

Решение о приобретении или об отказе от покупки вы по-прежнему принимаете самостоятельно. Полагаю, что в ближайшее время мы найдём немало результатов разгона таких процессоров в нашей статистике. Вполне возможно, что мне попалась неудачная партия и другие Intel Pentium 4 2.4A станут разгоняться лучше. Я бы только не стал на это рассчитывать, неоднократно высказывалось предположение, что на изготовление этих процессоров идёт "отбраковка", кристаллы, которые оказались неспособны работать на большей частоте.

«топовых» на тот момент настольных процессоров, перешагнувших 2-гигагерцовый рубеж. К сегодняшнему дню в линейках у обеих компаний появилось по новой модели, а значит, есть повод провести очередное сравнение или исправить недочеты старого. Исследование новых моделей всегда интересно, если те различаются архитектурно, но сегодня не тот случай. Старые ядра, следующая ступень коэффициентов умножения — вот и «новые процессоры». Заслуживает внимания «обратный» факт: Athlon XP 2100+ — это последняя модель на ядре Palomino, даже не значившаяся ранее в плане выпуска и прикрывающая место до выхода нового ядра Thoroughbred.

У процессоров Intel тоже грядут изменения. Совсем скоро состоится переход на шину 533 МГц, так что имеющийся у нас экземпляр тоже в некотором роде «прощальный».

Что ж, постараемся извлечь максимальную пользу из этого тестирования. Во-первых, можно сравнить новую модель с предшествующей, и по разнице показателей в тестах оценивать масштабируемость. Во-вторых, можно ввести в строй свежие версии используемых тестов и добавить новые — благо, такие статьи обычно для промежуточного сравнения не используют. Наконец, в-третьих, всегда остаются актуальными совершенно бесполезные и совершенно беспроигрышные попытки выявить абсолютного лидера по скорости.

Для решения первой задачи добавим в пару к Intel Pentium 4 2,4 ГГц 2,2-гигагерцовую модель, а к AMD Athlon XP 2100+ — Athlon XP 2000+, и протестируем каждую пару на одном и том же своем чипсете. Опираясь на опыт уже упомянутого большого сравнения, для решения третьей задачи выберем для процессора Intel три наиболее интересные платформы, а для процессора AMD ограничимся одной — самой быстрой практически везде VIA KT333 + DDR333. Что же до обновления тестового набора — пожалуйте в главу с результатами.

Условия тестирования

Тестовый стенд:

  • Процессоры:
    • Intel Pentium 4 2,2 ГГц, Socket 478
    • Intel Pentium 4 2,4 ГГц , Socket 478
    • AMD Athlon XP 2000+ (1667 МГц), Socket 462
    • AMD Athlon XP 2100+ (1733 МГц), Socket 462
  • Материнские платы:
    • EPoX 4BDA2+ (BIOS от 05/02/2002) на базе i845D
    • ASUS P4T-E (версия BIOS 1005E) на базе i850
    • Abit SD7-533 (версия BIOS 7R) на базе SiS 645
    • Soltek 75DRV5 (версия BIOS T1.1) на базе VIA KT333
  • 256 МБ PC2700 DDR SDRAM DIMM Samsung, CL 2 (использовалась как DDR266 на i845D)
  • 2x256 МБ PC800 RDRAM RIMM Samsung
  • ASUS 8200 T5 Deluxe GeForce3 Ti500
  • IBM IC35L040AVER07-0, 7200 об/мин, 40 ГБ
  • CD-ROM ASUS 50x

Программное обеспечение:

  • Windows 2000 Professional SP2
  • DirectX 8.1
  • Intel chipset software installation utility 3.20.1008
  • Intel Application Accelerator 2.0
  • SiS AGP Driver 1.09
  • VIA 4-in-1 driver 4.38
  • NVIDIA Detonator v22.50 (VSync=Off)
  • CPU RightMark RC0.99
  • RazorLame 1.1.4 + Lame codec 3.89
  • RazorLame 1.1.4 + Lame codec 3.91
  • VirtualDub 1.4.7 + DivX codec 4.12
  • VirtualDub 1.4.7 + DivX codec 5.0 Pro
  • WinAce 2.11
  • WinZip 8.1
  • eTestingLabs Business Winstone 2001
  • eTestingLabs Content Creation Winstone 2002
  • BAPCo & MadOnion SYSmark 2001 Office Productivity
  • BAPCo & MadOnion SYSmark 2001 Internet Content Creation
  • BAPCo & MadOnion SYSmark 2002 Office Productivity
  • BAPCo & MadOnion SYSmark 2002 Internet Content Creation
  • 3DStudio MAX 4.26
  • SPECviewperf 6.1.2
  • MadOnion 3DMark 2001 SE
  • idSoftware Quake III Arena v1.30
  • Gray Matter Studios & Nerve Software Return to Castle Wolfenstein v1.1
  • Expendable Demo
  • DroneZmarK
Плата EPoX 4BDA2+ ASUS P4T-E Abit SD7-533 Soltek 75DRV5
Чипсет i845D (RG82845 + FW82801BA) i850 (KC82850 + FW82801BA) SiS 645 (SiS 645 + SiS 961) VIA KT333 (KT333 + VT8233A)
Поддержка процессоров Socket 478, Intel Pentium 4 Socket 462, AMD Duron, AMD Athlon, AMD Athlon XP
Память 2 DDR 4 RDRAM 3 DDR 3 DDR
Слоты расширения AGP/ 6 PCI/ CNR AGP/ 5 PCI/ CNR AGP/ 5 PCI AGP/ 5 PCI/ CNR
Порты ввода/ вывода 1 FDD, 2 COM, 1 LPT, 2 PS/2
USB 2 USB 1.1 + 1 разъем на 2 USB 1.1 2 USB 1.1 + 2 разъема по 2 USB 1.1 2 USB 1.1 + 1 разъем на 2 USB 1.1
Интегрированный IDE-контроллер ATA100 ATA100 ATA100 ATA133
Внешний IDE-контроллер HighPoint HPT372 - - -
Звук AC"97 codec, Avance Logic ALC201A PCI Audio, C-Media CMI8738/PCI-6ch-MX AC"97 codec, VIA VT1611A
Встроенный сетевой контроллер - - - -
I/O-контроллер Winbond W83627HF-AW Winbond W83627GF-AW Winbond W83697HF ITE IT8705F
BIOS 2 Мбит Award Medallion BIOS v.6.00 2 Мбит Award Modular BIOS v.6.00PG 2 Мбит Award Modular BIOS v. 6.00PG
Форм-фактор, размеры ATX, 30,5x24,5 см ATX, 30,5x24,5 см ATX, 30,5x23 см ATX, 30,5x22,5 см

Результаты тестов

Мы уже не раз пытались сформулировать критерии оптимального процессорного теста. Конечно, идеал недостижим, но сегодня мы делаем свой первый шаг в его направлении — запускаем проект CPU RightMark (). За подробностями и новостями проекта отсылаем вас на его сайт, здесь же приведем краткие разъяснения, которые должны помочь вам понять суть тестового эксперимента и его инструментарий.

Итак, CPU RightMark — это тест процессора и подсистемы памяти, осуществляющий численное моделирование физических процессов и решение задач из области трехмерной графики. Говоря очень кратко, один блок программы численно решает систему дифференциальных уравнений, соответствующую моделированию в реальном времени поведения системы многих тел, другой же блок визуализирует найденные решения также в режиме реального времени. Каждый блок реализован в нескольких вариантах, оптимизированных под различные системы процессорных команд. Важно отметить, что тест не является чисто синтетическим, а написан с использованием приемов и средств программирования, типичных для задач своей области (трехмерных графических приложений).

Блок решения системы дифференциальных уравнений написан с использованием набора команд сопроцессора x87, а также имеет вариант, оптимизированный для набора SSE2 (c векторизацией цикла: две итерации цикла заменяются одной, но все операции производятся с двухэлементными векторами). Скорость работы этого блока свидетельствует о производительности связки процессор+память при выполнении математических расчетов с использованием действительных чисел двойной точности (характерно для современных научных задач: геометрических, статистических, задач моделирования).

Результаты данного подтеста показывают, что скорость работы с инструкциями x87 FPU у Athlon XP выше, однако за счет поддержки набора SSE2 (естественно, отсутствующей у Athlon XP) Pentium 4 оказывается гораздо быстрее. Подчеркнем, что в данном блоке не используются SSE-команды, поэтому результаты прогона теста в режимах с задействованием SSE опущены (они просто совпадают с соответствующими MMX/FPU и MMX/SSE2). Отметим почти идеальную масштабируемость теста по частоте CPU — здесь влияние памяти почти сведено к нулю за счет эффективного кэширования и характера работы блока с интенсивными вычислениями при сравнительно малом объеме обмена данными.

Блок визуализации в свою очередь состоит из двух частей: блока предварительной обработки сцены и блока трассировки лучей и отрисовки. Первый написан на С++ и откомпилирован с использованием набора команд сопроцессора x87. Второй написан на ассемблере и имеет несколько вариантов, оптимизированных под различные наборы инструкций: FPU+GeneralMMX, FPU+EnhancedMMX и SSE+EnhancedMMX (подобное разделение на блоки является типичным для имеющихся реализаций задач визуализации в реальном времени). Суммарная скорость работы блока визуализации свидетельствует о производительности связки процессор+память при выполнении геометрических расчетов с использованием действительных чисел одинарной точности (типично для трехмерных графических программ, оптимизированных под SSE и Enhanced MMX).

Опять же, скорость работы с инструкциями x87 FPU у Athlon XP оказывается значительно выше, однако использование при вычислениях SSE вновь выводит вперед Pentium 4, несмотря на поддержку этого набора процессорами Athlon XP. При этом по производительности на мегагерц оба процессора идут практически вровень, по суммарной же — Pentium 4 получает отрыв, соответствующий его более высокой частоте. Подчеркнем, что в данном блоке не используются SSE2-команды, поэтому результаты прогона теста в режимах с задействованием SSE2 опущены (они просто совпадают с соответствующими MMX/FPU и SSE/FPU). Отметим отличную производительность связки Pentium 4 + SiS 645, вызванную, очевидно, наибольшей скоростью доступа к памяти при малой латентности. Вообще, процесс рендеринга сопровождается довольно активной пересылкой данных, что делает вклад чипсета и типа используемой памяти в суммарную производительность системы значительным.

Суммарная производительность системы рассчитывается по формуле: Overall = 1/(1/MathSolving + 1/Rendering), так что очень значительный выигрыш Pentium 4 при использовании SSE2 в блоке расчета физической модели почти не дает прироста производительности без задействования SSE в блоке визуализатора. Зато при выполнении вычислений с помощью SSE добавка от включения SSE2 составляет вполне внушительную величину. (Отметим, что данная характеристика справедлива для конкретных выбранных условий тестирования, возможности же настройки теста позволяют задать практически любое соотношение времени просчета физической модели и визуализации (путем смены экранного разрешения или точности расчетов).) Так как Athlon XP не поддерживает набор SSE2, его производительность достаточно очевидно зависит от скорости отрисовки сцен, где он уступает Pentium 4 при использовании набора SSE, хотя и остается абсолютным чемпионом по «чистой» скорости выполнения операций при помощи только MMX и FPU. Отметим, что из протестированных чипсетов под Pentium 4 i845D смотрится чуть получше i850 (вероятно, из-за большей латентности у последнего), а чемпионом является SiS 645 по причине, указанной выше.

Довольно давно уже доступна новая версия популярного кодировщика Lame, но у нас все не было случая ее применить. В рамках подготовки данной статьи было проведено тестирование и старой, использовавшейся нами до сих пор версии 3.89, и последней официально доступной версии 3.91. Результаты совпали полностью (в пределах погрешности), что вполне согласуется с отсутствием упоминания о скоростной оптимизации кода в списке нововведений программы. (Кстати, кодировщик уже больше полугода корректно поддерживает работу со всеми доступными расширенными мультимедийными наборами команд и регистров.) Тест, как видите, превосходно масштабируется по частоте процессора, так как и здесь осуществляется эффективное предварительное кэширование данных, но остается ряд вопросов по довольно низкой производительности Pentium 4 на i850 и SiS 645. Самым разумным нам кажется предположение, что такое влияние на производительность оказывает BIOS плат: продукт от Abit мы еще не видели в деле, а вот плата от ASUS на i850 нам хорошо знакома, причем при использовании предыдущей версии прошивки (еще раз отсылаем вас к прошлому ) подобного спада не наблюдалось. Athlon XP в этом тесте по-прежнему лидер, причем для победы вполне хватает и версии 2000+.

Новая версия 5.0 кодека DivX вышла совсем недавно, но учитывая огромную популярность этого продукта, нетрудно предсказать его активное использование уже в ближайшее время, без ожидания выпуска новых релизов с исправлениями ошибок. Что ж, мы следуем в русле народных пожеланий и переходим к применению версии DivX 5.0 Pro. Мы также провели аналогичное тестирование c версией DivX 4.12, и результаты сравнения кодеков таковы: операция кодирования ускоряется весьма ощутимо — более чем на минуту, причем вне зависимости от процессора, чипсета и типа памяти. Также отметим, что DivX 5.0 Pro формирует чуть больший выходной видеофайл. К сравнению же собственно процессоров в этом тесте нам добавить нечего — все уже было сказано в прошлой статье, а вот на неплохую масштабируемость кодирования стоит обратить внимание.

В архивировании WinAce, как и при кодировании MPEG4, влияние подсистемы памяти (вследствие большого объема пересылаемых данных) примерно в два раза скрадывает эффект от увеличения частоты процессора. Athlon XP в этом тесте все еще лучше своего визави.

В архивировании WinZip отметим разве что некоторое отставание Pentium 4 на SiS 645 и полное равенство в остальных случаях.

Результаты Winstones выглядят на редкость логично и понятно, но памятуя о частых необъяснимых провалах и всплесках в этих тестах в прошлом, мы, пожалуй, воздержимся от комментариев.

Напомню, что до сих пор нам приходилось говорить решительное «не верим!» результатам Athlon XP в тесте SYSmark, так как в силу криворукости отдельных программистов версия WME 7.0, входящая в состав приложений группы Internet Content Creation этого теста, не умела определять поддержку набора инструкций SSE у Athlon XP. К счастью, мы наконец начинаем тестирование в обновленной версии бенчмарка — SYSmark 2002, в которой эта проблема решена.

Вкратце об отличиях в составе приложений тестов:

SYSmark 2001 SYSmark 2002
Office Productivity
Dragon NaturallySpeaking Preferred 5
McAfee VirusScan 5.13
Microsoft Access 2000 Microsoft Access 2002
Microsoft Excel 2000 Microsoft Excel 2002
Microsoft Outlook 2000 Microsoft Outlook 2002
Microsoft PowerPoint 2000 Microsoft PowerPoint 2002
Microsoft Word 2000 Microsoft Word 2002
Netscape Communicator 6.0
WinZip 8.0
Internet Content Creation
Adobe Photoshop 6.0 Adobe Photoshop 6.0.1
Adobe Premiere 6.0
Macromedia Dreamweaver 4
Macromedia Flash 5
Microsoft Windows Media Encoder 7.0 Microsoft Windows Media Encoder 7.1

Как видите, никаких замен нет, только обновления версий. Алгоритм подсчета итоговых баллов официально известных изменений не претерпел, хотя мы бы предположили пересчет некоторых коэффициентов пропорциональности.

Интересно сравнение результатов старого и нового пакетов в офисном подтесте: во-первых, был, вероятно, введен некий корректирующий коэффициент, что привело к уменьшению показателей обеих сторон. Во-вторых, очевидно, в силу переделанного пакета Microsoft Office, Pentium 4 начал выигрывать в этом подтесте, хотя в SYSmark 2001 обе процессорные платформы шли вровень.

В создающем контент подтесте ситуация еще интереснее: за счет нормального распознавания SSE у Athlon XP в MS WME 7.1 процессор AMD прибавил, но зато в состав подтеста нового пакета входит переписанная для поддержки SSE2 версия Adobe Photoshop 6.0.1, так что Pentium 4 получает даже больший прирост.

В итоге, от сомнительного лидерства в SYSmark Pentium 4 переходит к лидерству очевидному. Обратите также внимание на то, как здорово растет производительность Pentium-систем в этом тесте с ростом частоты процессора, и на почти отсутствующий аналогичный эффект для Athlon-системы.

Рендеринг в 3DStudio MAX отлично масштабируется и обычно не демонстрирует признаков зависимости от скорости работы с памятью, так что нам остается только гадать, что же такое наворотили в последней прошивке BIOS для ASUS P4T-E инженеры компании. На диаграмме хорошо видно, что рендеринг на Athlon XP ускоряется пропорционально увеличению частоты процессора, но как раз за счет гораздо более высокой частоты Pentium 4 2,4 ГГц уходит в этом тесте в отрыв, хотя скорость еще 2,2-гигагерцовой модели была примерно равна Athlon XP 2000+.

В SPECviewperf, в общем, ничего интересного: результаты почти везде равные, с легким перевесом Pentium 4, и лишь в DX-06 заметно впереди Athlon XP. Обратите внимание на то, что скорость тестов практически не зависит от скорости процессоров.

При переходе на новый процессор Intel игровой бенчмарк делает небольшой рывок, но это не помогает ему дотянуть даже до результатов Athlon XP 2000+.

Добавление к тестовым играм Return to Castle Wolfenstein, основанной на движке Quake III, ситуацию, естественно, никак не изменило. Более того, относительные показатели в этих двух играх похожи практически один в один. Приплюсуем сюда же DroneZ, отличающуюся движком, но не характером результатов, и остается только древняя Expendable — негусто для Athlon XP… Отметим, что все игры примерно одинаково неплохо масштабируются по частоте процессора, что тоже играет на руку Intel.

Выводы

Прощание ядру Palomino не слишком удалось: нельзя сказать, что Athlon XP так уж сильно отстает от своего соперника, да и далеко не везде это отставание вообще имеет место, но тенденции налицо. С реальной ли частотой, с PR-рейтингом ли — AMD отстает от Intel по волшебным цифрам в названии процессоров, а прирост производительности на увеличение частоты (какой бы «дутой» ее ни считали у Pentium 4) в большинстве наших тестов дает преимущество в абсолютных показателях именно линейке Pentium 4. Многие приложения «узнали», наконец, про поддержку SSE в Athlon XP, что дало некоторый всплеск, но это тупик, а вот оптимизация под SSE2 еще далеко не завершена, и чем дальше — тем больше приложений будет переходить из «лагеря AMD» в «лагерь Intel».

Впрочем, пост свой Palomino оставляет все же в приличном состоянии. Отставание последней модели от имеющихся конкурентов отнюдь не катастрофическое, цена привлекательная, а мы с больши м интересом будет наблюдать за попытками AMD вернуть лидерство с новым ядром.